

वार्षिक प्रतिवेदन ANNUAL REPORT 2022

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT पृथ्वी विज्ञान मंत्रालय, भारत सरकार Ministry of Earth Sciences, Govt. of India

वार्षिक प्रतिवेदन

2022

भारत मौसम विज्ञान विभाग

(पृथ्वी विज्ञान मंत्रालय)

(भारत सरकार)

मौसम भवन, लोदी रोड, नई दिल्ली- 110 003, भारत

TELEFAX: 91-11-24623220

Website: https://mausamjournal.imd.gov.in/

e mail:mausam.imd@imd.gov.in

कॉपीराइट © 2023 भारत मौसम विज्ञान विभाग सर्वाधिकार सुरक्षित

भारत में प्रकाशित

द्वारा

सूचना विज्ञान एवं ज्ञान संसाधन विकास प्रभाग (आई एस एंड के आर डी डी)
(पूर्व प्रकाशन अनुभाग)
भारत मौसम विज्ञान विभाग, नई दिल्ली - 110 003 (भारत)

e mail: mausam.imd@imd.gov.in

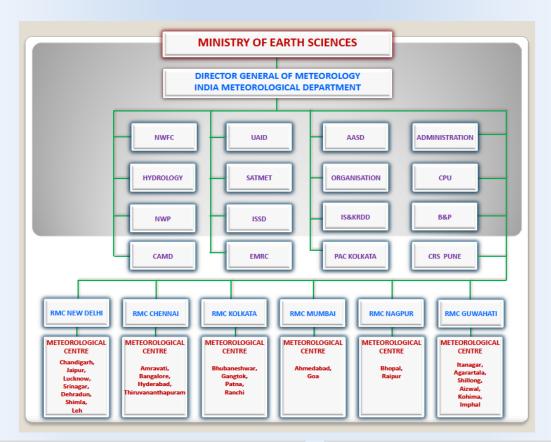
Dialing Code: 011-24344298, 24344522

Telefax: 91-11-24699216, 91-11-24623220

Website: https://mausamjournal.imd.gov.in/

आई एम डी संगठनात्मक संरचना

डॉ. जितेंद्र सिंह


विज्ञान और प्रौद्योगिकी मंत्रालय के राज्य मंत्री (स्वतंत्र प्रभार), राज्य मंत्री (स्वतंत्र प्रभार), राज्य मंत्री (स्वतंत्र प्रभार) पृथ्वी विज्ञान मंत्रालय, प्रधान मंत्री कार्यालय के राज्य मंत्री; कार्मिक, लोक शिकायत और पेंशन; परमाणु ऊर्जा विभाग और अंतरिक्ष विभाग

डॉ. एम. रविचंद्रन सचिव पृथ्वी विज्ञान मंत्रालय

डॉ. मृत्युंजय महापात्र मौसम विज्ञान महानिदेशक, भारत मौसम विज्ञान विभाग

NWFC : National Weather Forecasting Centre

Hydrology: **Hydromet Division**

NWP : Numerical Weather Prediction

CAMD : Central Aviation Meteorological Division

UAID : Upper Air Instruments Division SATMET : Satellite Meteorology Division

ISSD : Information Systems and Services Division EMRC : Environment Monitoring & Research Centre AASD : Agromet Advisory Services

Division

Organisation : Organisation

IS&KRDD : Information Science &

Knowledge Resource Development Division

PAC Kolkata : Positional Astronomy Centre,

Kolkata

Administration : Administration

CPU : Central Purchase Unit B&P : Budget & Planning

CRS Pune : Climate Research & Services,

Pune

प्रस्तावना

वर्ष 2022 के लिए भारत मौसम विज्ञान विभाग (आईएमडी) की वार्षिक रिपोर्ट प्रस्तुत करना एक बड़ा सौभाग्य है। रिपोर्ट वर्ष के दौरान विभाग की महत्वपूर्ण गतिविधियों पर प्रकाश डालती है। विभाग मौसम विज्ञान और संबद्ध क्षेत्रों में प्रख्यात सेवाएं प्रदान करके पृथ्वी और वायुमंडलीय विज्ञान के क्षेत्र में अग्रणी भूमिका निभा रहा है। जीवन और संपत्ति की सुरक्षा, पर्यावरण की सुरक्षा और सतत विकास के लिए प्राकृतिक संसाधनों के क्शल प्रबंधन के लिए स्रक्षा महत्वपूर्ण है।

2022 के दौरान, विभाग मौसम संबंधी अवलोकनों, सूचना प्रणालियों और संख्यात्मक मॉडलिंग के क्षेत्र में वैज्ञानिक बुनियादी ढांचे के आधुनिकीकरण की दिशा में प्रगतिशील कदम उठा रहा है। इससे आपदा प्रबंधन, कृषि, विमानन, जहाजरानी, मत्स्य पालन, ऊर्जा और परिवहन के क्षेत्रों में बेहतर सेवाएं प्रदान करने में मदद मिली। आईएमडी की सेवाएं बहुत कम दूरी (6 घंटे तक), छोटी दूरी (3 दिन पहले तक), मध्यम दूरी (4-10 दिन पहले तक), विस्तारित सीमा (4 सप्ताह पहले तक) और लंबी हैं। उपयोगकर्ता एजेंसियों, आपदा प्रबंधकों, आपातकालीन प्रतिक्रिया समूहों, अन्य हितधारकों की मांगों को पूरा करने के लिए गंभीर मौसम (चक्रवात, तूफान, भारी वर्षा, गर्मी की लहर, शीत लहर, कोहरे, आदि) चेतावनियों के साथ सीमा (मासिक और मौसमी) पूर्वान्मान में लगातार स्धार किया गया और आम जनता.

अनुसंधान एवं विकास के एक भाग के रूप में, आईएमडी त्रैमासिक पत्रिका मौसम के प्रकाशन के माध्यम से प्रोत्साहित करता है। अंतर्राष्ट्रीय शोध पत्रिका MAUSAM (पूर्व में भारतीय मौसम विज्ञान, जल विज्ञान और भूभौतिकी जर्नल) ने अपने प्रकाशन के 73^{वं} वर्ष में प्रवेश किया है और 2021 से इसे ऑनलाइन (https://mausamjournal.imd.gov.in/index.php/MAUSAM) कर दिया गया है। तब से यह जर्नल वैज्ञानिक पत्रिकाओं की दुनिया में प्रगति की ओर अग्रसर है और 2021 में 1.01 के प्रभाव कारक तक पहुंच गया है। सभी शोध लेख ('मौसम', 1950 की उत्पत्ति के बाद से) वेबसाइट पर अपलोड किए गए हैं और इन सभी के लिए डिजिटल ऑब्जेक्ट आइडेंटिफ़ायर (डीओआई) आवंटित कर दिए गए हैं। आईएमडी के वैज्ञानिकों ने वर्ष 2022 के दौरान सहकर्मी समीक्षा वाली राष्ट्रीय और अंतर्राष्ट्रीय पत्रिकाओं में 115 शोध पत्र प्रकाशित किए हैं।

आईएमडी जलवायु मापदंडों की निगरानी करता है और देश, डब्ल्यूएमओ और आईपीसीसी को वार्षिक जलवायु उपचार प्रदान करता है।

2022 में औसत वैश्विक तापमान पूर्व-औद्योगिक स्तर से लगभग 1.15 (1.02 से 1.27) °C ऊपर था। WMO द्वारा संकलित सभी डेटासेट के अनुसार, 2022 लगातार 8वां वर्ष (2015-2022) है जब वार्षिक वैश्विक तापमान पूर्व-औद्योगिक स्तर से कम से कम 1 डिग्री सेल्सियस ऊपर पहुंच गया है। 2022 के दौरान भारत में वार्षिक औसत भूमि सतह वायु तापमान दीर्घकालिक औसत (1981-2010 अविधि) से +0.51 °C अधिक था। 1901 में राष्ट्रव्यापी रिकॉर्ड श्रू होने के बाद से वर्ष 2022 रिकॉर्ड पर पांचवां सबसे गर्म वर्ष था।

पश्चिमी हिमालय, पंजाब, हरियाणा, दिल्ली, राजस्थान और उत्तर प्रदेश के मैदानी इलाकों सिहत देश के कई हिस्सों में तापमान लगातार सामान्य से 3 डिग्री सेल्सियस-8 डिग्री सेल्सियस ऊपर रहा, जिससे कई दशकों और कुछ सर्वकालिक रिकॉर्ड टूट गए। ओडिशा, मध्य प्रदेश, गुजरात, छत्तीसगढ़, तेलंगाना और झारखंड राज्यों में भी हीटवेव का अनुभव हुआ, कुछ क्षेत्रों में गंभीर, मार्च, 2022 के आखिरी दिनों में तापमान 40 डिग्री सेल्सियस-44 डिग्री सेल्सियस के बीच था। हीटवेव की स्थित अप्रैल में भी जारी रही, महीने के अंत में

अपने प्रारंभिक शिखर पर पहुँचना। हीटवेव से जंगलों में आग लगने का खतरा भी बढ़ जाता है। 28 अप्रैल को देश में लगभग 300 बड़ी जंगलों में आग लगी, इनमें से एक तिहाई उत्तराखंड में थीं। 29 अप्रैल तक भारत का लगभग 70 प्रतिशत भाग लू से प्रभावित था। अप्रैल के अंत और मई में, गर्मी की लहर भारत के तटीय क्षेत्रों और पूर्वी हिस्सों में फैल गई। इन महीनों के दौरान असामान्य रूप से उच्च तापमान से अनाज की भराई पर प्रतिकूल प्रभाव पड़ता है और जल्दी बुढापा आ जाता है, जिससे पैदावार कम हो जाती है।

2022 के दौरान, 1965-2021 के आंकड़ों के आधार पर 11.2 के सामान्य के मुकाबले उत्तरी हिंद महासागर पर 15 चक्रवाती विक्षोभ (तीन चक्रवाती तूफान और 12 अवसाद) बने। इसमें तीन चक्रवात, बंगाल की खाड़ी के ऊपर बने सात डिप्रेशन और अरब सागर के ऊपर बने तीन डिप्रेशन और दो भूमि डिप्रेशन शामिल थे। कुल मिलाकर, 2022 के दौरान क्षेत्र में अवसादों के बनने की आवृत्ति सामान्य से ऊपर थी और चक्रवातों के बनने की आवृत्ति सामान्य से कम थी। इनके अलावा , अत्यधिक भारी वर्षा, बाढ़, भूस्खलन, बिजली, तूफान, सूखा आदि जैसी चरम मौसम की घटनाएं भी अनुभव की गईं। आईएमडी द्वारा दी गई पूर्व चेतावनी से आपदा प्रबंधकों को 2022 में एशियाई क्षेत्र में चक्रवात के कारण होने वाली जान हानि को कम करके 46 तक लाने में मदद मिली।

आईएमडी, पृथ्वी विज्ञान मंत्रालय आईसीएआर , राज्य कृषि विश्वविद्यालय और अन्य संस्थानों के सिक्रय सहयोग से मौजूदा 130 कृषि-मौसम क्षेत्र इकाइयों के नेटवर्क के माध्यम से जिला /ब्लॉक स्तर पर किसानों को मौसम पूर्वानुमान आधारित कृषि मौसम सलाहकार सेवाएं (एएएस) प्रदान कर रहा है। एएमएफयू) और 199 जिला एग्रोमेट इकाइयां (डीएएमयू)। ये कृषि मौसम संबंधी सलाह ग्रामीण कृषि मौसम सेवा (जीकेएमएस) के तहत देश के 700 जिलों और 3100 ब्लॉकों को कवर करते हुए सप्ताह में दो बार (मंगलवार और शुक्रवार) 329 इकाइयों (एएमएफयू/डीएएमयू) द्वारा तैयार और प्रसारित की जा रही है। विभिन्न स्तरों पर उपयोगकर्ताओं की जरूरतों को पूरा करने के लिए एएएस बुलेटिन भी प्रत्येक मंगलवार और शुक्रवार को राज्य स्तर पर और प्रत्येक शुक्रवार को राष्ट्रीय स्तर पर तैयार और जारी किए जाते हैं। बुलेटिन में पिछला मौसम, अगले 5 दिनों के लिए मध्यम अवधि का मौसम पूर्वानुमान और खेत की फसलों , बागवानी फसलों, पशुधन आदि पर विशिष्ट कृषि मौसम संबंधी सलाह शामिल हैं।

आईएमडी ने भारत के 153 उप-बेसिनों में औसत वर्षा की निगरानी और भविष्यवाणी के लिए जल क्षेत्र के लिए जलवायु सेवाएं भी प्रदान की हैं और विस्तारि त रेंज के मौसम पूर्वानुमान के आधार पर वेक्टर जनित बीमारियों के लिए उपयुक्तता का दृष्टिकोण देने के लिए स्वास्थ्य बुलेटिन भी शुरू किए गए हैं और लगातार जारी हैं। व्यवहार में।

अंत में, मैं पिछले वर्ष के दौरान आईएमडी के सभी कर्मचारियों को उनके समर्थन और प्रति बद्धता के लिए ईमानदारी से धन्यवाद देता हूं और उत्कृष्टता के उच्च स्तर स्थापित करने की दिशा में हमारी यात्रा में आपके निरंतर समर्थन की आशा करता हूं। डॉ. वी.के. सोनी, वैज्ञानिक 'एफ' और श्री सनी चुग, वैज्ञानिक 'सी', सूचना विज्ञान और ज्ञान संसाधन विकास प्रभाग (आईएस एंड केआरडीडी) (पूर्व प्रकाशन अनुभाग) और प्रभाग में उनकी टीम को उनके ईमानदार प्रयासों के लिए मेरा विशेष धन्यवाद। इस वार्षिक रिपोर्ट 2022 का संकलन, संपादन और प्रकाशन।

(डॉ. मृत्युंजय महापात्र) मौसम विज्ञान के महानिदेशक

दस्तावेज नियंत्रक सूची भारत मौसम विज्ञान विभाग पृथ्वी विज्ञान मंत्रालय (MoES)

1.	दस्तावेज़ का शीर्षक	वार्षिक प्रतिवेदन २०२२
2.	दस्तावेज़ के प्रकार	तकनीकी
3.	अंक संख्या	एमओईएस / आईएमडी / वार्षिक प्रतिवेदन-2022/(01)2023/02
4.	जारी करने की तिथि	15.03.2023
5.	सुरक्षा वर्गीकरण	मुक्त
6.	नियंत्रण स्थिति	मुक्त
7.	पृष्ठों की संख्या	181
8.	संदर्भ संख्या	श्न्य
9.	वितरण	मुक्त
10.	भाषा	मुक्त
11.	तैयार करने वाला विभाग	भारत मौसम विज्ञान विभाग, नई दिल्ली [सूचना विज्ञान और ज्ञान
	समूह/	संसाधन विकास प्रभाग (IS & KRDD) (पूर्व में प्रकाशन अनुभाग)]
12.	समीक्षा और अनुमोदन करने वाला प्राधिकार	मौसम विज्ञान के महानिदेशक
13.	अंतिम उपयोगकर्ता	सभी के लिए मुक्त
14.	सार	यह रिपोर्ट वर्ष 2022 के दौरान भारत मौसम विज्ञान विभाग द्वारा की गई प्रगति पर प्रकाश डालती है। विभाग कृषि, विमानन, शिपिंग, मत्स्य पालन, पर्यावरण, जल, स्वास्थ्य, ऊर्जा के क्षेत्रों में बेहतर सेवाएं प्रदान करने के लिए अपने अवलोकन, पूर्वानुमान और सूचना प्रणालियों को लगातार बढ़ा रहा है। , परिवहन आदि। 2022 के दौरान कुछ महत्वपूर्ण उपलब्धियों में जिला एग्रोमेट इकाइयों (डीएएमयू) में 190 नए एग्रो-एडब्ल्यूएस की स्थापना, "पुणे लाइव वेदर ऐप" लॉन्च करना, 12 नए हाई विंड स्पीड रिकॉर्डर (एचडब्ल्यूएसआर) की स्थापना, 10 डिजिटल करंट वेदर की स्थापना शामिल है। इंस्डूमेंट सिस्टम (डीसीडब्ल्यूआईएस), मुक्तेश्वर (उत्तराखंड) में 3 डॉपलर मौसम रडार की कमीशनिंग; कुफरी (हिमाचल प्रदेश); और जम्मू (जम्मू-कश्मीर) में 2021 में कृषि विज्ञान केंद्रों (केवीके) में 200 एग्रो-एडब्ल्यूएस की स्थापना। आईएमडी ने चक्रवात के लिए वेब-जीआईएस आधारित इंटरैक्टिव मानचित्र विकसित किया। लेह में स्थापित मोबाइल प्लेटफॉर्म पर स्थापित एक्स-बैंड डॉपलर मौसम रडार। विभिन्न राज्य विभागों के मोबाइल ऐप्स और वेबसाइटों के साथ एग्रोमेट सलाह का एकीकरण। आईएमडी जर्नल मौसम का ऑनलाइन वेब पोर्टल लॉन्च किया गया।
15.	प्रमुख शब्द	आईएमडी वार्षिक प्रतिवेदन २०२२, एमओईएस, प्रकाशन, मौसम, मौसम
	_	

विषय सूची

अध्याय	विषय	पृष्ठ सं
1.	भारत मौसम विज्ञान विभाग - समीक्षा	1-7
2.	वर्ष 2022 का मौसम सारांश	8-31
	1. शीतऋतु (जनवरी तथा फरवरी)	8
	2. प्री-मानसून सीज़न (मार्च-मई)	12
	3. दक्षिण पश्चिम (एसडब्ल्यू) मानसून (जून-जुलाई-अगस्त-सितंबर)	18
	4. मानसून के बाद का मौसम (अक्टूबर-नवंबर-दिसंबर)	24
3.	संख्यात्मक मौसम भविष्यवाणी	32-42
4.	अवलोकन नेटवर्क	43-75
	4.1. अपर एयर ऑब्जर्वेशनल नेटवर्क	43
	4.2. भूतल अवलोकन नेटवर्क	44
	4.3. वायुमंडलीय विज्ञान	47
	4.4. रडार अवलोकन	52
	4.5. उपग्रह अवलोकन	56
	4.6. एफडीपी स्टॉर्म प्रोजेक्ट – 2022	68
5.	आईएमडी की मौसम एवं जलवायु सेवाएँ	76-103
	5.1. हाइड्रोमेट सेवाएँ	76
	5.2. कृषि मौसम संबंधी सलाह सेवाएँ	83
	5.3. स्थितीय खगोल विज्ञान सेवाएँ	86
	5.4. जलवायु अनुसंधान एवं सेवाएँ	88
	5.5. चक्रवात निगरानी एवं भविष्यवाणी	94
	5.6. सूखे की निगरानी एवं भविष्यवाणी	102
6.	क्षमता निर्माण, सार्वजनिक जागरूकता और आउटरीच कार्यक्रम	104-147

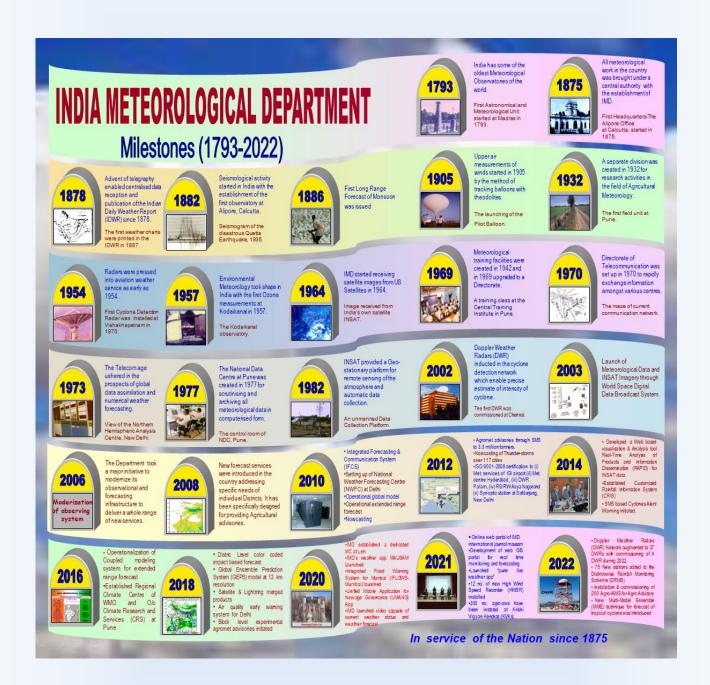
	6.1. सम्मेलन, सेमिनार और संगोष्ठी	104
	6.2. कार्यशाला	107
	6.3. बैठ कें	110
	6.4. प्रशिक्षण	125
	6.5. व्याख्यान/वार्ता	129
	6.6. जागरूकता एवं आउटरीच कार्यक्रम	134
	6.7. आगंतुकों	136
	6.8. महत्वपूर्ण घटनाएं 2022	140
7.	शोध प्रकाशन	148-153
	7.1. 'मौसम' में प्रकाशित शोध योगदान	148
	7.2. अतिरिक्त विभागीय पत्रिकाओं (भारतीय और विदेशी पत्रिकाओं) में प्रकाशित शोध योगदान	150
	7.3. आईएमडी मेट. प्रबंध	152
	7.4. अन्य प्रकाशन	143
	7.5 पुस्तकें/पुस्तक अध्याय	143
8.	वित्तीय संसाधन और प्रबंधन प्रक्रिया	154-156
	8.1. आईएमडी की अनुमोदित योजनाओं का बजट परिव्यय	154
	8.2. वर्ष 2022 के दौरान उत्पन्न राजस्व	156
9.	राजभाषा नीति का कार्यान्वयन	157-162
10.	01.01.2022 को अनु.जा./अनु.ज.जा./अ.पि.वर्ग की स्थिति	163
11.	विविध	164-171
	11.1. सम्मान और पुरस्कार	164
	11.2. मीडिया इंटरेक्शन	167
	11.3. नई परियोजनाएं/योजनाएं/कार्यक्रम स्वीकृत/आरंभ किए गए	169
	11.4. विभिन्न आरएमसी एवं मौसम केन्द्रों के पते	171

अध्याय 1

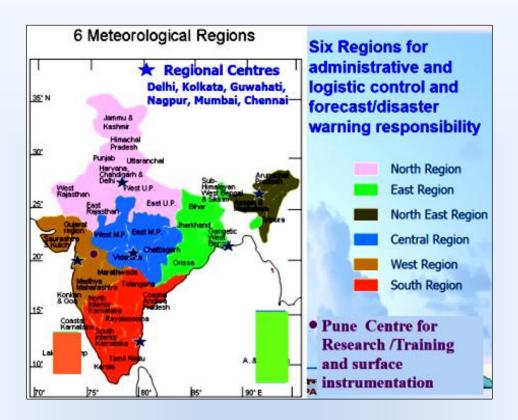
भारतीय मौसम विज्ञान विभाग - सिंहावलोकन

भारत मौसम विज्ञान विभाग, पृथ्वी विज्ञान मंत्रालय देश की राष्ट्रीय मौसम सेवा और मौसम विज्ञान, भूकंप विज्ञान और इससे संबद्ध अन्य विषयों से संबंधित सभी मामलों की प्रमुख सरकारी एजेंसी है और यह सार्वजनिक तथा विशेष क्षेत्रों के लिए मौसम और जलवायु सेवाएं प्रदान करता है।

इसके मुख्य कार्य हैं:


- मौसम संबंधी प्रेक्षणों को लेना और मौसम पर आधारित गतिविधियों जैसे कृषि, सिंचाई, जहाजरानी,
 विमानन, अपतटीय खनिज तेल अन्वेषण, आदि के इष्टतम संचालन के लिए मौसम की वर्तमान और
 पूर्वानुमान संबंधी जानकारी प्रदान करना।
- उष्णकिटबंधीय चक्रवात, कालबैशाखी, धूल भरी आँधी, भारी वर्षा और बर्फ, शीत और उष्ण लहरों आदि जैसी खराब मौसम की घटनाओं की चेतावनी देना, जो जानमाल के नुकसान का कारण बनते हैं।
- कृषि, जल संसाधन प्रबंधन, उद्योगों, खनिज तेल अन्वेषण और अन्य राष्ट्र निर्माण गतिविधियों के लिए आवश्यक मौसम संबंधी आँकड़े उपलब्ध कराना।
- मौसम विज्ञान और संबद्ध विषयों में अनुसंधान को संचालित करना और इसका बढ़ावा देना।
- विकास परियोजनाओं के लिए देश के विभिन्न भागों में आए भूकंपों के स्थान का पता लगाना और उनकी भूकंपनीयता का मूल्यांकन करना

1864 में कलकता में एक विनाशकारी उष्णकिटबंधीय चक्रवात आया और इसके बाद 1866 और 1871 में मॉनसून की वर्षा विफल रही। वर्ष 1875 में, भारत सरकार ने भारत मौसम विज्ञान विभाग की स्थापना की, जो देश में सभी मौसम संबंधी कार्यों को एक केंद्रीय प्राधिकरण के तहत लाया गया। श्री एच. एफ. ब्लानफोर्ड को भारत सरकार के लिए मौसम संबंधी रिपोर्टर निय्कत किया गया।


1875 में एक मामूली शुरुआत से, आईएमडी ने मौसम संबंधी प्रेक्षणों, संचार, पूर्वानुमान और मौसम सेवाओं के लिए अपने बुनियादी ढांचे का उत्तरोत्तर विस्तार किया है और इसने एक समानांतर वैज्ञानिक विकास हासिल किया है। IMD ने हमेशा समकालीन प्रौद्योगिकी का उपयोग किया है। टेलीग्राफ युग में, इसने अवलोकन संबंधी डेटा एकत्र करने और चेतावनी भेजने के लिए मौसम टेलीग्राम का व्यापक उपयोग किया। बाद में आईएमडी भारत का पहला संगठन बन गया, जिसके पास अपने वैश्विक डेटा विनिमय को समर्थन करने के लिए एक संदेश स्विचिंग कंप्यूटर है। देश में लगाए गए पहले कुछ इलेक्ट्रॉनिक कंप्यूटरों में से एक कंप्यूटर आईएमडी को मौसम विज्ञान में वैज्ञानिक अनुप्रयोगों के लिए प्रदान किया गया था। भारत दुनिया का पहला विकासशील देश है, जिसके पास दुनिया के इस हिस्से की निरंतर मौसम निगरानी और विशेष रूप से चक्रवात की चेतावनी के लिए अपना भूस्थैतिक उपग्रह, INSAT है। IMD ने लगातार अनुप्रयोग और सेवा के नए क्षेत्रों में प्रवेश किया है, और 145 वर्षों के इतिहास में अपने इंफ्रा-स्ट्रक्चर को लगातार समृद्ध किया है। इसने भारत में मौसम विज्ञान और वायुमंडलीय विज्ञान के विकास को एक साथ विकसित किया है। आज, भारत में मौसम विज्ञान एक रोमांचक भविष्य की दहलीज पर है।

भारत में दुनिया की कुछ सबसे पुरानी मौसम संबंधी वेधशालाएं थीं और पहली खगोलीय और मौसम विज्ञान संबंधी इकाई 1793 में मद्रास में शुरू हुई थी। इस प्रकार, भारत में मौसम विज्ञान संबंधी प्रेक्षण 1875 में विभाग की स्थापना से पहले भी लिया गया था। तब से आईएमडी ने 1793 से 2022 की अविध में कई महत्वपूर्ण उपलब्धियाँ हासिल किए हैं।

मौसम विज्ञान के महानिदेशक, भारत मौसम विज्ञान विभाग के प्रमुख हैं , इसका मुख्यालय नई दिल्ली में है। प्रशासनिक और तकनीकी नियंत्रण की सुविधा के लिए इसके 6 प्रादेशिक मौसम विज्ञान केंद्र हैं जो उप महानिदेशक के प्रशासनिक नियंत्रण में हैं और उनके मुख्यालय मुंबई, चेन्नै, नई दिल्ली, कोलकाता, नागपुर और गुवाहाटी में स्थित हैं। उप महानिदेशक के प्रशासनिक नियंत्रण में विभिन्न प्रकार की परिचालन इकाइयाँ हैं जैसे मौसम विज्ञान केंद्र, पूर्वानुमान कार्यालय, कृषि मौसम सलाहकार केंद्र, बाढ़ मौसम कार्यालय और चक्रवात संसूचन रेडार स्टेशन।

भारत मौसम विज्ञान विभाग ने 2022 तक अवलोकन, चेतावनी और प्रसार तंत्र/प्रणालियों में सुधार के लिए अपने प्रयास जारी रखे हैं। इसकी बेहतर सेवाएं बहुत कम (6 घंटे तक), छोटी (3 दिन पहले तक) के संबंध में प्रदान की गई हैं। मांगों को पूरा करने के लिए मध्यम (7-10 दिन पहले तक), विस्तारित (15 से 20 दिन पहले तक), लंबी (मासिक और मौसमी) सीमा और गंभीर मौसम (चक्रवात, तूफान, अत्यधिक वर्षा) के पूर्वानुमान बनाए गए हैं। 2022 में उपयोगकर्ता एजेंसियों, आपदा प्रबंधकों, आपातकालीन प्रतिक्रिया समूहों और अन्य हितधारकों की संगठित तरीके से। इसके लघु, मध्यम, विस्तारित और लंबी दूरी और चक्रवात पूर्वानुमानों की द्निया भर में सराहना की गई।

पश्चिमी हिमालय, पंजाब, हिरयाणा, दिल्ली, राजस्थान और उत्तर प्रदेश के मैदानी इलाकों सिहत देश के कई हिस्सों में तापमान लगातार सामान्य से 3°C-8°C ऊपर रहा, जिससे कई दशकों और कुछ सर्वकालिक रिकॉर्ड टूट गए। ओडिशा, मध्य प्रदेश, गुजरात, छत्तीसगढ़, तेलंगाना और झारखंड राज्यों में भी मार्च के आखिरी दिनों में 40°C-44°C के बीच तापमान के साथ कुछ क्षेत्रों में भीषण गर्मी का सामना करना पड़ा। लू की स्थिति अप्रैल में भी जारी रही, जो महीने के अंत में अपने प्रारंभिक चरम पर पहुंच गई। हीटवेव से जंगलों में आग लगने का खतरा भी बढ़ जाता है। 28 अप्रैल को देश में लगभग 300 बड़ी जंगलों में आग लगी, इनमें से एक तिहाई उत्तराखंड में थीं। 29 अप्रैल तक भारत का लगभग 70 प्रतिशत भाग लू से प्रभावित था। अप्रैल के अंत और मई में, गर्मी की लहर भारत के तटीय क्षेत्रों और पूर्वी हिस्सों में फैल गई।

वार्षिक (जनवरी-दिसंबर)-2022 के लिए पूरे देश में वर्षा 1257.0 मिमी दर्ज की गई है, जो कि इसकी लंबी अविध के औसत (एलपीए) 1160.0 मिमी का 108% है। कुल मिलाकर, श्रेणी के अनुसार, 13 मौसम उप-विभाग अधिक में, 20 मौसम उप-विभाग सामान्य में, 03 अल्प और शून्य में। उप-विभाग वर्षा की अधिकता, अधिक कमी और वर्षा न होने की श्रेणी में रहे।

2022 के दौरान, प्रति वर्ष 11.2 के सामान्य (1965-2021 के दौरान) के मुकाबले एनआईओ पर 15 सीडी [अधिकतम निरंतर हवा की गति (एमएसडब्ल्यू) ≥ 17 समुद्री मील] विकसित हुई। इस प्रकार, वर्ष 2022 के दौरान सीडी के गठन की वार्षिक गतिविधि सामान्य से ऊपर थी।

12 डिप्रेशन और गहरे डिप्रेशन (एमएसडब्ल्यू: 17-33 नॉट) (सामान्य: 6.5 प्रति वर्ष), 1 चक्रवाती तूफान (एमएसडब्ल्यू: 34-47 नॉट) (सामान्य: 1.8 प्रति वर्ष) और 2 गंभीर चक्रवाती तूफान (एमएसडब्ल्यू: 48) थे। -63 समुद्री मील) (सामान्य: 2.9 प्रति वर्ष) वर्ष 2022 के दौरान।

2022 के दौरान NIO पर प्रति वर्ष सामान्य 4.7 के मुकाबले कुल 3 चक्रवात (MSW≥ 34 नॉट) विकसित हुए। कुल मिलाकर, 2022 के दौरान इस क्षेत्र में अवसाद के गठन की आवृत्ति सामान्य से ऊपर थी और चक्रवातों की आवृत्ति सामान्य से कम थी। अरब सागर पर 3 सीडी (सामान्य: 2.3 प्रति वर्ष), बंगाल की खाड़ी पर 10 [सामान्य: 7.8 प्रति वर्ष थीं] और 2022 के दौरान भूमि पर 2 (सामान्य: 1.1 प्रति वर्ष)। बंगाल की खाड़ी, अरब सागर और भूमि पर सीडी के गठन के संबंध में बेसिन-वार गतिविधि सामान्य से ऊपर थी।

आईएमडी ने 2022 के दौरान सीडी की निगरानी और भविष्यवाणी के लिए अपने सभी संसाधनों का उपयोग किया। हमें आपको यह बताते हुए खुशी हो रही है कि सभी चक्रवाती गड़बड़ी की निगरानी की गई और पर्याप्त लीड समय और बड़ी सटीकता के साथ भविष्यवाणी की गई। आईएमडी ने एनआईओ पर निरंतर निगरानी बनाए रखी और अक्टूबर-दिसंबर के दौरान विस्तारित रेंज आउटलुक (अगले 15 दिनों के लिए वैध), दैनिक उष्णकटिबंधीय मौसम आउटलुक (अगले 5 दिनों के लिए वैध), दैनिक विस्तृत पूर्वानुमान और नैदानिक रिपोर्ट जारी करने के साथ सभी गड़बड़ियों की निगरानी की। अगले 7 दिनों के लिए) और चक्रवाती विक्षोभ अविध के गठन पर 6 घंटे/3 घंटे/प्रति घंटे संरचित ब्लेटिन।

सीडी की निगरानी इन्सैट 3डी और 3डीआर से उपलब्ध उपग्रह अवलोकनों, ध्रुवीय परिक्रमा उपग्रहों, क्षेत्र में उपलब्ध जहाजों और बोया अवलोकनों, डॉपलर मौसम रडार (डीडब्ल्यूआर) और तटीय वेधशालाओं से अवलोकनों की मदद से की गई थी। आईएमडी, एनसीएमआरडब्ल्यूएफ, आईआईटीएम और आईएनसीओआईएस सिहत पृथ्वी विज्ञान मंत्रालय (एमओईएस) संस्थानों द्वारा संचालित विभिन्न वैश्विक मॉडल और गितशील-सांख्यिकीय मॉडल का उपयोग सीडी की उत्पित, ट्रैक, भूस्खलन और तीव्रता के साथ-साथ भारी वर्षा सिहत संबंधित गंभीर मौसम की भविष्यवाणी करने के लिए किया गया था। तेज़ हवाएँ और तूफ़ान। आईएमडी की एक डिजीटल पूर्वानुमान प्रणाली का उपयोग विभिन्न अवलोकनों और संख्यात्मक मौसम भविष्यवाणी मॉडल मार्गदर्शन, निर्णय लेने की प्रक्रिया और चेतावनी उत्पाद निर्माण के विश्लेषण और तुलना के लिए किया गया था। पूर्वानुमान मुख्य रूप से आईएमडी द्वारा स्वदेशी रूप से विकसित मल्टी-मॉडल एसेम्बल तकनीकों पर आधारित थे।

देश के विभिन्न हिस्सों में अत्यधिक भारी वर्षा, बाढ़, भूस्खलन, बिजली, तूफान आदि जैसी चरम मौसमी घटनाओं का अनुभव हुआ। उनमें से कुछ का उल्लेख नीचे किया गया है। यहां उल्लिखित इन चरम घटनाओं के कारण होने वाली मौतें मीडिया और आपदा प्रबंधन प्राधिकरणों की सरकारी रिपोर्टों पर आधारित हैं।

2022 के दौरान अब तक असम सबसे प्रतिकूल रूप से प्रभावित राज्य था, जिसमें कथित तौर पर अत्यधिक भारी वर्षा, बाढ़, भूस्खलन, बिजली, तूफान की घटनाओं के कारण 250 से अधिक मौतें हुईं। बिहार भी सबसे बुरी तरह प्रभावित राज्यों में से एक था, जहां मुख्य रूप से बिजली गिरने और तूफान के कारण 180 से अधिक मौतें हुईं। जबिक, अलग-अलग मौसम की घटनाओं के कारण महाराष्ट्र राज्य में 130 से अधिक लोगों की जान चली गई।

भारी वर्षा, बाढ़ और भूस्खलन की घटनाओं ने देश के विभिन्न हिस्सों में 660 से अधिक लोगों की जान ले ली। इनमें से 198 जानें असम से, 73 महाराष्ट्र से, 61 हिमाचल प्रदेश से, 56 मणिपुर से (30 जून को नोनी जिले में भारी भूस्खलन के कारण) और 47 राजस्थान से थीं।

आंधी और बिजली ने देश के विभिन्न हिस्सों में 700 से अधिक लोगों की जान ले ली। इनमें बिहार से 186, उत्तर प्रदेश से 64, झारखंड से 62, राजस्थान से 61, असम से 58, छत्तीसगढ़ से 53, महाराष्ट्र से 50, और मध्य प्रदेश और ओडिशा से 48-48 लोग हताहत हुए।

2022 में प्रमुख उपलब्धियों का सारांश

टिप्पणियों

कृषि मौसम विज्ञान वेधशालाएँ और डेटा प्रबंधन

ऑब्सेविंग सिस्टम्स एंड फील्ड काम्पैग्न्स अंडर ग्रामीण कृषि मौसम सेवा (जीकेएमएस)

- जीकेएमएस योजना के तहत एग्रोमेट सलाह में मौसम अवलोकन और उपयोग को बढ़ाने के लिए एग्रोमेट फील्ड यूनिट पोर्ट ब्लेयर, अंडमान और निकोबार द्वीप समूह में पारंपरिक एग्रोमेट वेधशाला स्थापित की गई है।
- कृषि विज्ञान केंद्रों (केवीके) के परिसर में जिला कृषि मौसम इकाइयों (डीएएमय्) में 200 एग्रो-एडब्ल्यूएस स्थापित किए गए हैं।
- आउटरीच बढ़ाने के लिए, विभिन्न राज्य सरकारों और शैक्षणिक संस्थानों के मोबाइल एप्लिकेशन और वेबसाइटों के साथ मौसम पूर्वानुमान और कृषि मौसम सलाह को एकीकृत करने की पहल की गई है। बिहार, छत्तीसगढ़, गुजरात, हरियाणा, मध्य प्रदेश, नागालैंड, राजस्थान, तमिलनाडु और उत्तराखंड राज्यों के लिए एकीकरण पहले ही पूरा हो चुका है और ओडिशा, उत्तर प्रदेश, मेघालय और महाराष्ट्र के लिए एकीकरण उन्नत चरण में है।
- कृषि के लिए प्रभाव आधारित पूर्वानुमान (आईबीएफ) (शीत लहर/ओलावृष्टि/भारी वर्षा/गर्मी की लहर/तेज हवाओं के साथ आंधी आदि) और आईबीएफ पर आधारित कृषि मौसम संबंधी सलाह देश भर के विभिन्न राज्यों और केंद्रशासित प्रदेशों के विभिन्न जिलों के लिए जारी की गई है। वर्ष के दौरान राष्ट्रीय मौसम पूर्वानुमान केंद्र (एनडब्ल्यूएफसी), नई दिल्ली, क्षेत्रीय मौसम विज्ञान केंद्र (आरएमसी)/मौसम विज्ञान केंद्र (एमसी), एएमएफयू और डीएएमयू के साथ समन्वय।

मॉडलिंग एवं मौसम एवं जलवाय् सेवाओं में वृद्धि

जीएसआई, एनआरएससी, आईएमडी और एचआरसी द्वारा संयुक्त रूप से उत्तराखंड के रुद्रप्रयाग जिले और केरल के वायनाड जिले के लिए भारतीय उपमहाद्वीप के संवेदनशील पहाड़ी क्षेत्रों में भूस्खलन से संबंधित फ्लैश बाढ़ की बेहतर भविष्यवाणी के लिए फ्लैश फ्लड मार्गदर्शन प्रणाली में भूस्खलन संवेदनशीलता मॉड्यूल का एकीकरण पूरा कर लिया गया है।

शहरी शहरों की वास्तविक समय में बाढ़ की निगरानी के लिए शहरी बाढ़ मॉड्यूल को फ्लैश फ्लड मार्गदर्शन प्रणाली में एकीकृत किया गया है। इस संदर्भ में, शहरी बाढ़ मॉडलिंग पर पायलट अध्ययन के लिए दिल्ली को चुना गया है। WMO एक विकास भागीदार के रूप में HRC के सहयोग से इस परियोजना को वित्तपोषित करने पर सहमत हुआ है। इस परियोजना के कार्यान्वयन को सुविधाजनक बनाने के लिए पूर्व-अपेक्षित डेटासेट का विवरण एकत्र किया जा रहा है।

ऑल इंडिया रेडियो (एआईआर) और दूरदर्शन, निजी टीवी और रेडियो चैनलों, समाचार पत्र और इंटरनेट, एसएमएस आदि जैसे विभिन्न मल्टी-मीडिया चैनलों के माध्यम से किसानों को कृषि मौसम संबंधी सलाह का प्रसार व्यापक पैमाने पर किया जा रहा है। सार्वजनिक निजी भागीदारी (पीपीपी) मोड के तहत, रिलायंस फाउंडेशन, किसान संचार आदि भी कृषक समुदाय को एसएमएस के माध्यम से कृषि संबंधी सलाह प्रसारित कर रहे हैं। इसके अलावा, कई एएमएफयू कृषि प्रौद्योगिकी प्रबंधन एजेंसी (एटीएमए) के सहयोग से एसएमएस के माध्यम से कृषि संबंधी सलाह भेज रहे हैं। चरम मौसम की घटनाओं के दौरान कृषि मंत्रालय के एमिकसान पोर्टल और अन्य सोशल मीडिया का उपयोग करके एएमएफयू द्वारा एसएमएस के माध्यम से अलर्ट और चेताविनयां भी जारी की गई हैं। गहरी मंदी के दौरान, आंध्र प्रदेश, तिमलनाड़ और प्रइचेरी राज्यों/केंद्र शासित प्रदेशों के किसानों को 756408 एसएमएस प्रसारित किए गए।

ANNUAL REPORT 2022

- एग्रोमेट सलाहकार उत्पादन और फीडबैक संग्रह प्रणाली के स्वचालन के लिए उन्नत प्रौद्योगिकी-आधारित
 उपकरणों/तकनीकों का विकास।
- एनआरएससी, हैदराबाद के भुवन पोर्टल में कृषि मौसम उत्पादों का प्रदर्शन
 एग्रीमेट डिवीजन ने राष्ट्रीय रिमोट सेंसिंग सेंटर, हैदराबाद द्वारा विकसित भुवन पोर्टल में दैनिक आधार पर
 विभिन्न अस्थायी पैमानों पर मौसम मापदंडों के स्थानिक वितरण का प्रदर्शन श्रू किया।
- अंतिरक्ष अनुप्रयोग केंद्र (एसएसी), अहमदाबाद ने हाल ही में जीकेएमएस योजना के तहत फसल विकास निगरानी के लिए इसरो-आईएमडी वनस्पित सूचना प्रणाली विकसित की है। सलाहकारी तैयारी में उपयोग के लिए सभी एएमएफयू के साथ विवरण साझा किया गया है
- आईएमडी वैज्ञानिकों द्वारा 115 शोध पत्र राष्ट्रीय और अंतर्राष्ट्रीय पत्रिकाओं में प्रकाशित किए गए। राष्ट्रीय स्तर के आपदा प्रबंधकों के लिए 2 विशेष संदेश, प्रिंट और इलेक्ट्रॉनिक मीडिया के लिए 7 प्रेस विज्ञप्तियां, जब सिस्टम आंध्र प्रदेश तट के करीब होता है तो 9 घंटे के बुलेटिन, डब्ल्यूएमओ/ईएससीएपी पैनल के सदस्य देशों के लिए 38 उष्णकटिबंधीय चक्रवात सलाह सिहत कुल 38 राष्ट्रीय बुलेटिन, 17 अंतर्राष्ट्रीय नागरिक उड्डयन के लिए उष्णकटिबंधीय चक्रवात सलाह, वैश्विक समुद्री संकट सुरक्षा प्रणाली के तहत समुद्री क्षेत्र के लिए 38 सलाह, दैनिक वीडियो अपडेट, सोशल मीडिया (फेसबुक, व्हाट्सएप, ट्विटर) पर नियमित अपडेट, आपदा प्रबंधकों, आम जनता, मछुआरों और किसानों को एसएमएस जारी किए गए। आईएमडी मुख्यालय द्वारा आंध्र प्रदेश, ओडिशा, पश्चिम बंगाल, तमिलनाडु और पुडुचेरी और अंडमान और निकोबार द्वीप समूह में राज्य स्तरीय कार्यालयों द्वारा समान कार्रवाई के साथ।

आईएमडी ने शहरी मौसम विज्ञान सेवाओं के तहत शुरुआती मौसम और वायु प्रदूषण की निगरानी/पूर्वानुमान/चेतावनी के लिए प्रमुख शहरों के लिए उच्च घनत्व मेसो-नेटवर्क और उच्च-रिज़ॉल्यूशन मॉडलिंग ढांचे की स्थापना शुरू कर दी है। वर्तमान में, दिल्ली/एनसीआर, बेंगलुरु, चेन्नई, मुंबई और कोलकाता के लिए प्रसार प्रणाली सार्वजनिक डोमेन में उपलब्ध है। 2022 के अंत तक शहरी मौसम विज्ञान सेवाओं को 50 शहरों तक बढ़ाया जाएगा।

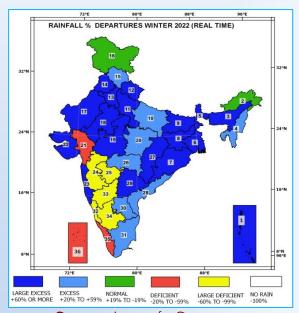
- 1. 10 आईएमडी स्टेशनों पर स्वदेशी आरएस/आरडब्ल्यू सिस्टम की स्थापना पूरी हो चुकी है।
- 63 पीबी स्टेशनों में से 05 पायलट बैलून स्टेशनों को स्वचालित जीपीएस पीबी स्टेशनों में अपग्रेड किया गया है और ये पीबी सिस्टम स्वदेशी हैं और आईएमडी दिल्ली में निर्मित/असेंबल किए गए हैं।
- 20 पीबी स्टेशनों में से 18 पीबी स्टेशनों पर स्वदेशी जीपीएस पीबी सिस्टम की स्थापना पूरी हो चुकी है,
 शेष दो स्टेशनों पर शीघ्र ही स्थापित किया जाना है।

अध्याय 2 2022 के दौरान मौसम का सारांश

1. शीत ऋतु (जनवरी तथा फरवरी)

प्रमुखता

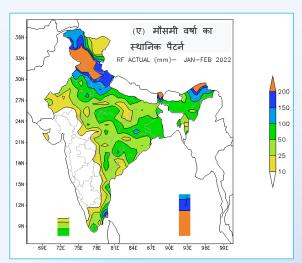
पंजाब के उपमंडल में मौसमी वर्षा (127.2 मिमी) वर्ष 1911 (127.2 मिमी) के बाद 1901 के बाद दूसरी सबसे अधिक थी। हरियाणा, चंडीगढ़ और दिल्ली के उपखंड में मौसमी वर्षा (85.5 मिमी) 1954 (117.1 मिमी) और 2013 (98.8 मिमी) के बाद 1901 के बाद तीसरी सबसे अधिक थी। दक्षिण प्रायद्वीपीय भारत का औसत तापमान (0.51 डिग्री सेल्सियस की विसंगति के साथ 26.37 डिग्री सेल्सियस) 1901 के बाद से 8^{वां} उच्चतम था।

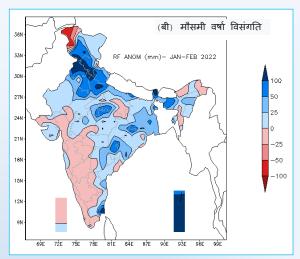

शीत लहर की स्थिति

13-19 जनवरी के दौरान पूर्वी उत्तर प्रदेश, पूर्वी राजस्थान और पूर्वी मध्य प्रदेश में कुछ स्थानों पर शीत लहर की स्थिति देखी गई। 20-26 जनवरी के दौरान गुजरात राज्य, पश्चिम मध्य प्रदेश और पूर्वी राजस्थान में कुछ स्थानों पर शीत लहर की स्थिति देखी गई। जनवरी के अंतिम सप्ताह के दौरान पूर्वी और पश्चिमी मध्य प्रदेश, पूर्वी राजस्थान, विदर्भ और मराठवाड़ा में गंभीर/शीत लहर की स्थिति देखी गई।

3-9 फरवरी के दौरान, विदर्भ, पूर्वी मध्य प्रदेश, पूर्वी उत्तर प्रदेश और ओडिशा में अलग-अलग स्थानों पर एक-एक दिन के लिए शीत लहर की स्थिति देखी गई। 10-16 फरवरी के सप्ताह के दौरान, पूर्वी और पश्चिमी मध्य प्रदेश में अलग-अलग स्थानों पर दो-दो दिन शीत लहर की स्थिति देखी गई।

वर्षा की विशेषताएं

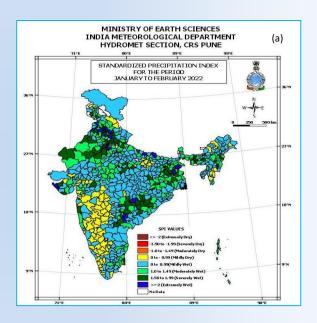

सीज़न के दौरान हुई वर्षा उसके एलपीए का 144% थी। जनवरी के दौरान यह इसके एलपीए का 229% और फरवरी के दौरान इसके एलपीए का 81% था। प्रायद्वीप, पश्चिम-मध्य भारत और लक्षद्वीप के कुछ उपविभागों को छोड़कर शेष सभी उपविभागों में बड़ी मात्रा में अधिक/अधिक/सामान्य वर्षा हुई।

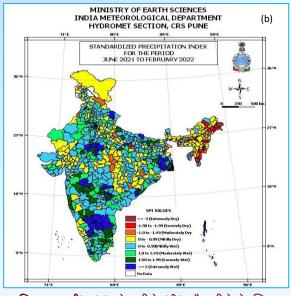


चित्र 1. उपखंडवार वर्षा प्रतिशत प्रस्थान

सीज़न के दौरान, 36 मौसम संबंधी उपविभागों में से 18 में अत्यधिक वर्षा हुई, 8 में अधिक वर्षा हुई, 2 उपविभागों में सामान्य वर्षा हुई, 3 में कम वर्षा हुई और 5 में काफी कम वर्षा हुई (चित्र 1)। पंजाब के उप-विभाजन में मौसमी वर्षा (127.2 मिमी) वर्ष 1911 (127.2 मिमी) के बाद 1901 के बाद दूसरी सबसे अधिक थी। हरियाणा, चंडीगढ़ और दिल्ली के उपखंड में मौसमी वर्षा (85.5 मिमी) 1954 (117.1 मिमी) और 2013 (98.8 मिमी) के बाद 1901 के बाद तीसरी सबसे अधिक थी।

चित्र 2(ए) मौसम के दौरान प्राप्त वर्षा (मिमी) के स्थानिक पैटर्न को दर्शाता है। उत्तर, पूर्व और उत्तर-पूर्व, पूर्व मध्य, प्रायद्वीपीय भारत और दोनों द्वीपों के कुछ हिस्सों में वर्षा की गतिविधि देखी गई। अरुणाचल प्रदेश के कुछ हिस्से, उप-हिमालयी पश्चिम बंगाल और सिक्किम, असम और मेघालय, पश्चिम उत्तर प्रदेश, उत्तराखंड, हिमाचल प्रदेश, हिरयाणा, चंडीगढ़ और दिल्ली, जम्मू और कश्मीर और लद्दाख, पंजाब, तिमलनाडु, पुडुचेरी और कराईकल और अंडमान और निकोबार द्वीप समूह 100 मिमी से अधिक वर्षा हुई। अरुणाचल प्रदेश, उप-हिमालयी पश्चिम बंगाल और सिक्किम, जम्मू और कश्मीर, लद्दाख, हिमाचल प्रदेश, पंजाब और उत्तराखंड के हिस्सों में 200 मिमी से अधिक वर्षा हुई।

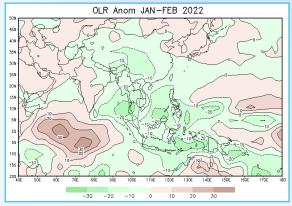

चित्र 2(ए&बी). (ए) मौसमी वर्षा (मिमी) (बी) मौसमी वर्षा विसंगति (मिमी) का स्थानिक पैटर्न (1961-2010 नॉर्मल्स पर आधारित)


चित्र 2(बी) मौसम के दौरान वर्षा विसंगति (मिमी) के स्थानिक पैटर्न को दर्शाता है। उप-हिमालयी पश्चिम बंगाल और सिक्किम, जम्मू और कश्मीर और लद्दाख के कुछ हिस्सों में वर्षा विसंगति 100 मिमी से अधिक थी। पंजाब, हरियाणा, चंडीगढ़ और दिल्ली, हिमाचल प्रदेश, उत्तराखंड, पश्चिम उत्तर प्रदेश, तमिलनाडु, पुडुचेरी और कराईकल और अंडमान और निकोबार द्वीप समूह। जम्मू-कश्मीर और लद्दाख के कुछ हिस्सों में नकारात्मक वर्षा विसंगति की तीव्रता 50 मिमी से अधिक थी।

मानकीकृत वर्षा सूचकांक (एसपीआई)

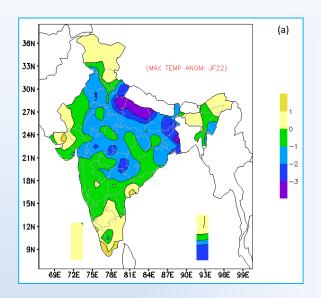
मानकीकृत वर्षा सूचकांक (एसपीआई) सूखे को मापने के लिए उपयोग किया जाने वाला एक सूचकांक है और यह केवल वर्षा पर आधारित है। यह सूचकांक सूखे के लिए नकारात्मक और गीली स्थितियों के लिए सकारात्मक है। जैसे-जैसे सूखी या गीली स्थितियाँ अधिक गंभीर होती जाती हैं, सूचकांक क्रमशः अधिक नकारात्मक या सकारात्मक होता जाता है। अंजीर. 3(ए&बी) क्रमशः सर्दियों के मौसम 2022 (जनवरी-फरवरी, 2 महीने संचयी) और जून 2021-फरवरी 2022 (नौ महीने संचयी) की अविध के लिए एसपीआई मान दिखाते हैं।

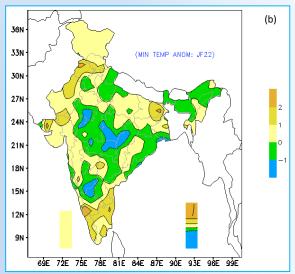
पिछले दो महीनों के संचयी एसपीआई मूल्य असम और मेघालय, नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, उप हिमालयी पश्चिम बंगाल और सिक्किम, गंगीय पश्चिम बंगाल, ओडिशा, झारखंड, बिहार, उत्तर प्रदेश राज्य के कुछ हिस्सों में अत्यधिक गीली/गंभीर रूप से गीली स्थितयों का संकेत देते हैं। उत्तराखंड, हिरयाणा, चंडीगढ़ और


चित्र 3(ए&बी). (ए) दो महीने (बी) नौ महीने के लिए मानकीकृत वर्षा सूचकांक (एसपीआई)

दिल्ली, पंजाब, हिमाचल प्रदेश, जम्मू और कश्मीर और लद्दाख, राजस्थान राज्य, मध्य प्रदेश राज्य, सौराष्ट्र और कच्छ, कोंकण और गोवा, विदर्भ, छतीसगढ़, तेलंगाना और तिमलनाडु, जबिक, अत्यधिक शुष्क / गंभीर रूप से शुष्क देश के किसी भी हिस्से में ऐसी स्थितियाँ नहीं देखी गई।

पिछले नौ महीनों के संचयी एसपीआई मूल्य ए और एन द्वीप समूह, गांगेय पश्चिम बंगाल, ओडिशा, झारखंड, बिहार, पूर्वी उत्तर प्रदेश, उत्तराखंड, हरियाणा, चंडीगढ़ और दिल्ली, पंजाब, पूर्वी राजस्थान, पश्चिम मध्य के कुछ हिस्सों में अत्यधिक गीली/गंभीर रूप से गीली स्थितियों का संकेत देते हैं। प्रदेश, कोंकण और गोवा, मध्य महाराष्ट्र, मराठावाड़ा, आंध्र प्रदेश राज्य, तेलंगाना, तिमलनाडु, उत्तर आंतरिक कर्नाटक, दक्षिण आंतरिक कर्नाटक और केरल, जबिक अरुणाचल प्रदेश, असम और मेघालय, नागालैंड के कुछ हिस्सों में अत्यधिक शुष्क/गंभीर शुष्क स्थित देखी गई। , मणिपुर, मिजोरम और त्रिपुरा, उप हिमालयी पश्चिम बंगाल और सिक्किम, झारखंड और पूर्वी उत्तर प्रदेश।


आउटगोइंग लॉन्गवेव रेडिएशन (ओएलआर)


भारतीय क्षेत्र और पड़ोस में ओएलआर विसंगति (डब्ल्यू/एम²) चित्र 4 में दिखाई गई है। अरुणाचल प्रदेश को छोड़कर देश के अधिकांश हिस्सों में ओएलआर विसंगति सामान्य सीमा के भीतर थी। मध्य और पूर्व मध्य बंगाल की खाड़ी के ऊपर ओएलआर विसंगति -10 W/m² से कम थी।

चित्र 4. सर्दियों के लिए ओएलआर विसंगति (डब्ल्यू/एम2)। (जनवरी-फरवरी) 2022

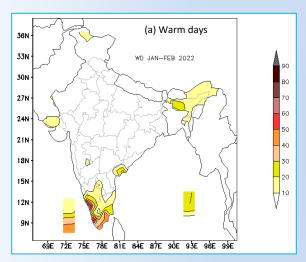
(डेटा स्रोत: सीडीसी/एनओएए, यूएसए) (1991 - 2020 जलवायु विज्ञान पर आधारित)

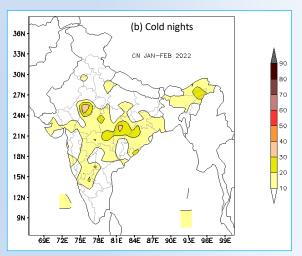
चित्र **५(ए&बी)**. औसत मौसमी तापमान विसंगतियाँ (डिग्री सेल्सियस) (ए) अधिकतम (बी) न्यूनतम (1981-2010 सामान्य पर आधारित)

तापमान

औसत मौसमी अधिकतम और न्यूनतम तापमान विसंगतियों को चित्र में दिखाया गया है। चित्र 5(ए&बी) अधिकतम तापमान रहा। पूर्वोत्तर भारत, मध्य भारत (गुजरात राज्य), दिक्षण प्रायद्वीपीय भारत और दोनों द्वीपों के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में सामान्य से नीचे। सौराष्ट्र और कच्छ, तटीय आंध्र प्रदेश और यनम, तिमलनाडु, पुडुचेरी और कराईकल और केरल और माहे के कुछ हिस्सों में अधिकतम तापमान विसंगति 1 डिग्री सेल्सियस से अधिक थी। उत्तराखंड, उत्तर प्रदेश राज्य, बिहार, झारखंड, गांगेय पिश्चम बंगाल, हिरयाणा, चंडीगढ़ और दिल्ली, मध्य प्रदेश राज्य, विदर्भ, तेलंगाना और अंडमान और निकोबार द्वीप समूह के कुछ हिस्सों में अधिकतम तापमान -2 डिग्री

सेल्सियस से कम था। उत्तर प्रदेश राज्य, बिहार, गंगीय पश्चिम बंगाल के कुछ हिस्सों में अधिकतम तापमान विसंगति -3 डिग्री सेल्सियस से कम था।


उत्तर पश्चिम भारत के कुछ हिस्से, मध्य भारत, दक्षिण प्रायद्वीपीय भारत और अंडमान और निकोबार द्वीप समूह। उत्तरी पंजाब, बिहार, उत्तरी सौराष्ट्र और कच्छ, दिक्षण आंतरिक कर्नाटक, उत्तरी केरल और माहे और अंडमान के कुछ हिस्सों में न्यूनतम तापमान विसंगति 2 डिग्री सेल्सियस से अधिक थी। और निकोबार द्वीप समूह। पश्चिम राजस्थान, मध्य प्रदेश राज्य, छत्तीसगढ़, विदर्भ, सुदूर दक्षिणी गंगा के तटवर्ती पश्चिम बंगाल, तटीय आंध्र प्रदेश और यनम, दिक्षण आंतरिक कर्नाटक, उत्तरी आंतरिक कर्नाटक और अंडमान और निकोबार


द्वीप समूह के कुछ हिस्सों में न्यूनतम तापमान विसंगति -1 डिग्री सेल्सियस से कम था।

गर्म दिन/ठंडी रातें

चित्र 6(ए&बी) उन दिनों का प्रतिशत दर्शाता है जब अधिकतम (न्यूनतम) तापमान 90^{वें} (10^{वें}) प्रतिशत से अधिक (कम) था।

तमिलनाडु, पुदुचेरी और कराईकल, केरल और माहे और लक्षद्वीप के कुछ हिस्सों में सर्दियों के मौसम के 40% से अधिक दिनों में अधिकतम तापमान 90 प्रतिशत से अधिक था। न्यूनतम तापमान के लिए कोई महत्वपूर्ण वितरण नहीं देखा गया।

चित्र 6(ए&बी)। उन दिनों का प्रतिशत जब (ए) अधिकतम तापमान > 90 प्रतिशत (बी) न्यूनतम तापमान <10 प्रतिशत

कम दबाव प्रणाली

शीत ऋतु के दौरान फरवरी माह में 3-4 फरवरी के दौरान भूमि पर एक निम्न दबाव प्रणाली का निर्माण होता है।

महत्वपूर्ण मौसम घटनाएँ (वास्तविक समय की मीडिया रिपोर्टों पर आधारित)

सीज़न के दौरान महत्वपूर्ण मौसमी घटनाएं (वास्तविक समय की मीडिया रिपोर्टों पर आधारित)। 1 जनवरी से 28 फरवरी तक कथित तौर पर कुल 12 लोगों की मौत, 7 लोगों के घायल होने और 58 मवेशियों के मारे जाने का दावा किया गया। कारणों का विवरण नीचे दिया गया है, जो वास्तविक समय की मीडिया रिपोर्टों पर आधारित है।

आकाशीय बिजली: 1 जनवरी से 28 फरवरी तक आकाशीय बिजली के कारण कथित तौर पर कुल 4 लोगों की मौत हो गई और 8 पशुधन की मौत हो गई। होशंगाबाद, मुरैना, टीकमगढ़ (मध्य प्रदेश) में कथित तौर पर तीन (3) व्यक्तियों की मौत का दावा किया गया और नागपुर (महाराष्ट्र) में एक (1) व्यक्ति की कथित तौर पर मौत का दावा किया गया।

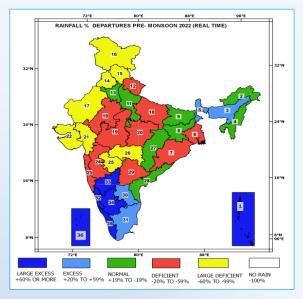
बर्फबारी: बर्फबारी के कारण 1 जनवरी से 28 फरवरी तक पश्चिम कामेंग (अरुणाचल प्रदेश) में कथित तौर पर कुल 7 लोगों की मौत का दावा किया गया है।

बाढ़ और भारी बारिश: बाढ़ और भारी बारिश के कारण 1 जनवरी से 28 फरवरी तक राजौरी, रामबन (केंद्र शासित प्रदेश-जम्मू और कश्मीर) में एक (1) व्यक्ति की कथित तौर पर मौत हो गई, 1 घायल हो गया और 50 पश्धन की मौत हो गई।

वज़पात: 1 जनवरी से 28 फरवरी तक गढ़वा (झारखंड) में वज़पात के कारण कुल 6 व्यक्ति घायल हो गये।

2. प्री-मानसून सीज़न (मार्च-मई)

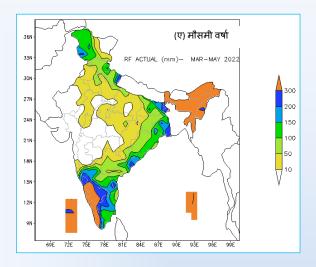
प्रमुखता

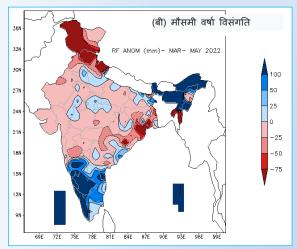

दक्षिणी प्रायद्वीपीय भारत के सजातीय क्षेत्र में हुई वर्षा (198.2 मिमी) 1901 के बाद पांचवीं सबसे अधिक थी। इस वर्ष प्री-मॉनसून सीज़न के लिए औसत तापमान 1.06 डिग्री सेल्सियस की विसंगति के साथ 28.68 डिग्री सेल्सियस था और वर्ष के बाद दूसरा सबसे अधिक था। 1901 से 2010 (28.89 डिग्री सेल्सियस)। उत्तर-पश्चिम भारत में औसत तापमान (26.98 डिग्री सेल्सियस) सबसे अधिक था, मध्य भारत (30.47 डिग्री सेल्सियस) वर्ष 2010 (30.59 डिग्री सेल्सियस) और पूर्व और पूर्वीतर भारत (26.71 डिग्री सेल्सियस) के बाद दूसरे स्थान पर था। 1901 के बाद से सातवां उच्चतम था।

लू की स्थिति

2022 प्री-मॉनसून सीज़न के दौरान, गर्मी की लहर/गंभीर हीटवेव की स्थिति ज्यादातर मध्य भारत, उत्तर पश्चिम भारत, उत्तरी भारत और पूर्वोत्तर भारत के हिस्सों में देखी गई।

वर्षा की विशेषताएं

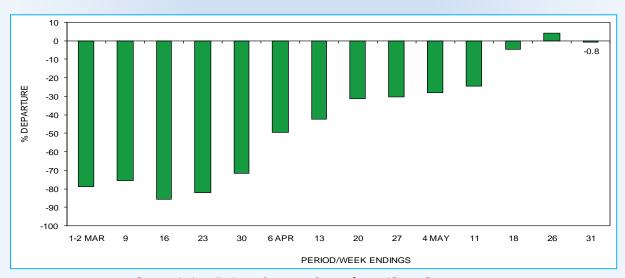

2022 प्री-मॉनस्न सीज़न के दौरान वर्षा गतिविधि सामान्य थी। सीज़न के दौरान हुई वर्षा एलपीए का 99% थी। सीज़न के दौरान, 36 मौसम संबंधी उप-विभाजनों में से 6 में अत्यधिक वर्षा हुई, 4 में अत्यधिक वर्षा हुई, 8 में सामान्य वर्षा हुई, 10 में कम वर्षा हुई और 8 उप-विभागों में बड़े पैमाने पर कम वर्षा हुई (चित्र 7)/ प्री-मॉनस्न सीज़न के दौरान दक्षिण और उत्तर आंतरिक कर्नाटक के सजातीय क्षेत्र में वर्षा (क्रमशः 324.5 मिमी, 162.9 मिमी) 1901 के बाद से सबसे अधिक थी। प्री-मॉनस्न सीज़न के दौरान उप-हिमालयी पश्चिम बंगाल और सिक्किम में वर्षा (601.4 मिमी) थी, असम और मेघालय (909.3 मिमी) और अंडमान और निकोबार द्वीप समूह (783.3 मिमी) 1901 के बाद से 5 मबसे ऊंचे स्थान पर थे।



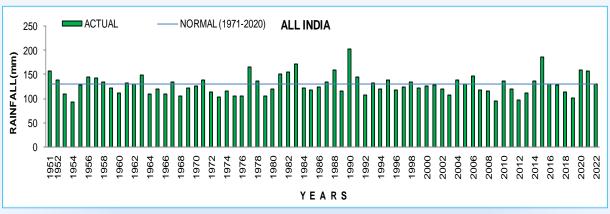
चित्र 7. उपखण्डवार वर्षा प्रतिशत प्रस्थान

चित्र 8(ए) मौसम के दौरान प्राप्त वर्षा (मिमी) के स्थानिक पैटर्न को दर्शाता है। असम और मेघालय के हिस्से, नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, उप-हिमालयी पश्चिम बंगाल और सिक्किम, गांगेय पश्चिम बंगाल, बिहार, उत्तराखंड, जम्मू और कश्मीर और लद्दाख, तटीय आंध्र प्रदेश और यनम, रायलसीमा, तमिलनाडु, पुडुचेरी और कराईकल, कर्नाटक राज्य, केरल और माहे तथा दोनों द्वीपों में 200 मिमी से अधिक वर्षा हुई। अरुणाचल प्रदेश, असम और मेघालय, नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, उप-हिमालयी पश्चिम बंगाल और सिक्किम, कर्नाटक राज्य, केरल और माहे के कुछ हिस्सों और दोनों द्वीपों में 300 मिमी से अधिक वर्षा हुई।

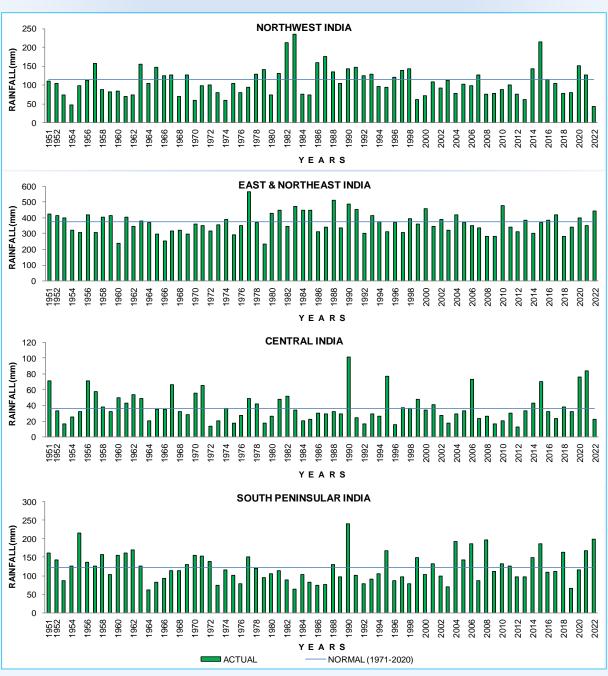
चित्र 8(बी) मौसम के दौरान वर्षा विसंगति (मिमी) के स्थानिक पैटर्न को दर्शाता है। मध्य, उत्तरी और उत्तर-पश्चिमी भागों में वर्षा विसंगति नकारात्मक थी, जबिक उत्तरपूर्वी और प्रायद्वीपीय भागों में यह सकारात्मक थी। अरुणाचल प्रदेश, असम और मेघालय, नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, उप-हिमालयी पश्चिम बंगाल और सिक्किम, कर्नाटक राज्य, आंध्र प्रदेश राज्य, केरल और माहे और दोनों के कुछ हिस्सों में 100 मिमी से अधिक की सकारात्मक वर्षा विसंगति देखी गई। द्वीप. नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, जम्मू और कश्मीर और लद्दाख, हिमाचल प्रदेश, उत्तराखंड, गंगीय पश्चिम बंगाल और ओडिशा के कुछ हिस्सों में नकारात्मक वर्षा विसंगति की तीव्रता 75 मिमी से अधिक थी।


चित्र **8(ए&बी).** (ए) मौसमी वर्षा (मिमी) (बी) मौसमी वर्षा विसंगति (मिमी) (1961-2010 सामान्य के आधार पर)

चित्र 9 पूरे देश के लिए मौसम के दौरान क्षेत्र-भारित संचयी साप्ताहिक वर्षा प्रतिशत को दर्शाता है। 18 मई तक संचयी वर्षा प्रस्थान नकारात्मक था और उसके बाद सकारात्मक हो गया।


चित्र 10(ए) 1951-2022 की अवधि के लिए पूरे देश में क्षेत्र-भारित मौसमी वर्षा को दर्शाता है। 2022 के प्री-मानसून सीज़न के लिए, वर्षा उसके एलपीए मूल्य का 99% थी। मार्च के दौरान यह इसके एलपीए का 29%, अप्रैल के दौरान इसके एलपीए का 98% और मई के दौरान इसके एलपीए का 135% था।

चित्र 10(बी) 1951-2022 की अवधि के लिए चार सजातीय क्षेत्रों में क्षेत्र-भारित मौसमी वर्षा की समय शृंखला को दर्शाता है। इस वर्ष सीज़न के दौरान, दक्षिण प्रायद्वीपीय भारत में एलपीए का 163%, पूर्व और पूर्वोत्तर भारत में एलपीए का 118%, मध्य भारत में एलपीए का 61% और उत्तर-पश्चिम भारत में एलपीए का 37% बारिश हुई।


दक्षिणी प्रायद्वीपीय भारत के सजातीय क्षेत्र में प्राप्त वर्षा (198.2 मिमी) 1901 के बाद 1990 (239.7 मिमी), 1943 (220.6 मिमी), 1955 (214.2 मिमी) और 1933 (205.1 मिमी) के बाद पांचवीं सबसे अधिक वर्षा थी।

चित्र 9. पूरे देश में क्षेत्र भारित साप्ताहिक वर्षा का संचित प्रतिशत प्रस्थान

चित्र 10(ए). पूरे देश में क्षेत्र भारित वर्षा की समय श्रृंखला (1951 - 2022)

चित्र 10(बी). चार सजातीय क्षेत्र में भारित वर्षा की समय शृंखला प्री-मानसून (मार्च-मई) सीज़न के लिए क्षेत्र (1951-2022)

मानकीकृत वर्षा सूचकांक

मानकीकृत वर्षा सूचकांक (एसपीआई) सूखे की निगरानी के लिए उपयोग किया जाने वाला एक सूचकांक है और यह केवल वर्षा पर आधारित है। यह सूचकांक शुष्क के लिए नकारात्मक और गीली स्थितियों के लिए सकारात्मक है। जैसे-जैसे सूखी या गीली स्थितियाँ अधिक गंभीर होती जाती हैं, सूचकांक अधिक नकारात्मक या सकारात्मक होता जाता है। चित्र 11(ए&बी) इस वर्ष प्री-मॉनसून सीज़न के लिए और पिछले मॉनसून सीज़न की अवधि के लिए क्रमशः जून 2021-मई 2022 (12 महीने संचयी) के लिए एसपीआई मान देते हैं।

पिछले तीन महीनों के संचयी एसपीआई मूल्य ए और एन द्वीप समूह, अरुणाचल प्रदेश, असम और मेघालय, नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, उप हिमालयी पश्चिम बंगाल और सिक्किम, पश्चिम उत्तर प्रदेश, रायलसीमा के कुछ हिस्सों में अत्यधिक गीली/गंभीर रूप से गीली स्थिति दर्शाते हैं। तमिलनाडु, पुडुचेरी और कराईकल, कर्नाटक राज्य और केरल और माहे जबकि

MINISTRY OF EARTH SCIENCES
INDIA METEOROLOGICAL DEPARTMENT
HYDROMET SECTION, CRS PUNE

71-E

00 * 09 * 99 * 99 *

STANDARDIZED PRECIPITATION INDEX
FOR THE PERIOD
MARCH TO MAY 2022

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

35-74

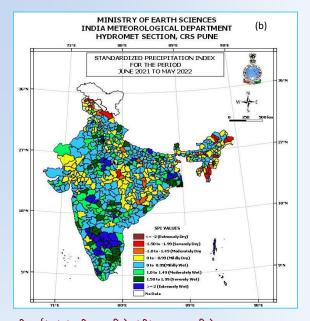
35-74

35-74

35-74

35-74

35-74


35-74

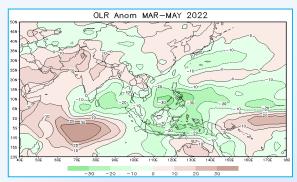
35-74

35-

असम और मेघालय, गांगेय पश्चिम बंगाल, ओडिशा, पंजाब, हिमाचल प्रदेश, जम्मू और कश्मीर, विदर्भ और तेलंगाना में अत्यधिक शुष्क/गंभीर शुष्क स्थिति देखी गर्ड।

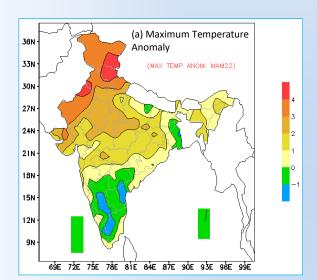
पिछले बारह महीनों के संचयी एसपीआई मूल्यों से संकेत मिलता है कि अंडमान और निकोबार द्वीप समूह, उप हिमालयी पश्चिम बंगाल और सिक्किम, गंगीय पश्चिम बंगाल, झारखंड, बिहार, पूर्वी उत्तर प्रदेश, उत्तराखंड, हरियाणा, चंडीगढ़ के कुछ हिस्सों में अत्यधिक गीली/गंभीर रूप से गीली स्थितियाँ देखी गईं। और दिल्ली, पंजाब, पूर्वी राजस्थान, पश्चिम मध्य प्रदेश, कोंकण और गोवा, मध्य महाराष्ट्र, मराठवाड़ा, आंध्र प्रदेश राज्य, तेलंगाना, तिमलनाडु, पुडुचेरी और कराईकल, उत्तरी आंतरिक कर्नाटक, दक्षिण आंतरिक कर्नाटक और केरल और माहे अत्यधिक शुष्क/गंभीर रूप से शुष्क अरुणाचल प्रदेश, असम और मेघालय, नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, हिमाचल प्रदेश, जम्मू और कश्मीर और पूर्वी मध्य प्रदेश के कुछ हिस्सों में स्थिति देखी गई।

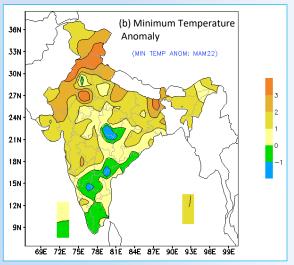
चित्र 11(ए&बी). मानकीकृत वर्षा सूचकांक (एसपीआई) (ए) तीन महीने (बी) बारह महीने

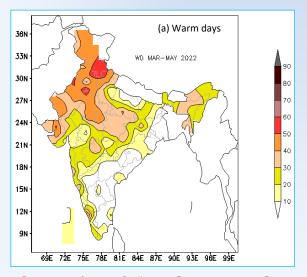

आउटगोइंग लॉन्गवेव रेडिएशन (ओएलआर)

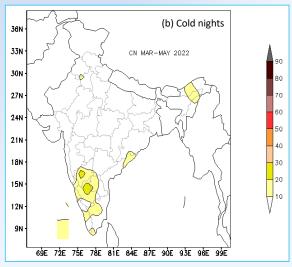
भारतीय क्षेत्र और पड़ोस में ओएलआर विसंगति (डब्ल्यू/एम²) को चित्र 12 में दिखाया गया है। 2022 प्री-मानसून सीज़न के दौरान चरम प्रायद्वीपीय भागों को छोड़कर देश के अधिकांश हिस्सों में ओएलआर विसंगति सकारात्मक थी। पूरे देश में OLR विसंगति ± 10 W/m² के

भीतर थी। बंगाल की खाड़ी के दक्षिणी भागों में OLR विसंगति -20 W/m² से कम थी।


तापमान


मौसम के दौरान औसत मौसमी अधिकतम और न्यूनतम तापमान विसंगतियों को चित्र में दिखाया गया है। चित्र 13(ए&बी)।


चित्र 12. प्री-मानसून (मार्च-मई) 2022 के लिए ओएलआर विसंगति (डब्ल्यू/एम²)


(स्रोत: सीडीसी/एनओएए, यूएसए) (1991-2020 जलवायु विज्ञान पर आधारित) पूर्व और पूर्वोत्तर भारत, मध्य भारत, दक्षिण प्रायद्वीपीय भारत और दोनों द्वीपों के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में अधिकतम तापमान सामान्य से ऊपर था। लद्दाख, हिमाचल प्रदेश, पंजाब और पश्चिम राजस्थान के कुछ हिस्सों में अधिकतम तापमान विसंगति 4°C से अधिक थी। तटीय आंध्र प्रदेश और यनम, तेलंगाना, दक्षिण आंतरिक कर्नाटक, उत्तरी आंतरिक कर्नाटक, केरल और माहे, गंगीय पश्चिम बंगाल और तिमलनाडु, पुडुचेरी और कराईकल के कुछ हिस्सों में अधिकतम तापमान विसंगति -1 डिग्री सेल्सियस से कम थी।

चित्र 13(ए&बी). औसत मौसमी तापमान विसंगतियाँ (डिग्री सेल्सियस) (ए) अधिकतम (बी) न्यूनतम (1981-2010 सामान्य के आधार पर)

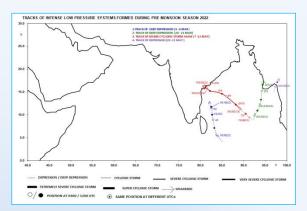
चित्र 14(ए&बी). उन दिनों का प्रतिशत जब (ए) अधिकतम तापमान > 90 प्रतिशत (बी) न्यूनतम तापमान <10 प्रतिशत

मध्य भारत, दक्षिण प्रायद्वीपीय भारत और लक्षद्वीप के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में न्यूनतम तापमान सामान्य से ऊपर था। लद्दाख, हिमाचल प्रदेश, पंजाब, राजस्थान राज्य और बिहार के कुछ हिस्सों में न्यूनतम तापमान विसंगति 3 डिग्री सेल्सियस से अधिक थी। पूर्वी मध्य प्रदेश, छत्तीसगढ़, विदर्भ, आंध्र प्रदेश राज्य, तेलंगाना और दक्षिण आंतरिक कर्नाटक के कुछ हिस्सों में न्यूनतम तापमान विसंगति - 1 डिग्री सेल्सियस से कम थी।

गर्म दिन/ठंडी रातों का प्रतिशत

चित्र 14(ए&बी) उन दिनों का प्रतिशत दर्शाता है जब अधिकतम (न्यूनतम) तापमान 90^व (10^व) प्रतिशत से अधिक (कम) था। उत्तराखंड, हिमाचल प्रदेश, हरियाणा, चंडीगढ़ और दिल्ली और पश्चिम राजस्थान के कुछ हिस्सों में मौसम के 50% से अधिक दिनों में अधिकतम तापमान 90 प्रतिशत से अधिक था। न्यूनतम तापमान के लिए कोई महत्वपूर्ण वितरण नहीं देखा गया।

कम दबाव प्रणाली


2022 प्री-मॉनसून सीज़न के दौरान मार्च में दो गहरे दबाव बने, एक बंगाल की खाड़ी के ऊपर (3-6 मार्च) और दूसरा अंडमान सागर (20-22) के ऊपर। मई के दौरान, बंगाल की खाड़ी (7-12 मई) के ऊपर एक गंभीर चक्रवाती तूफान ("ASANI") बना, और मार्तबन की खाड़ी और उससे सटे म्यांमार (20-21 मई) के ऊपर एक दबाव का क्षेत्र बना।

Month/Systems	CS and above	DD	D	WML	LPA
March	0	2(BOB)	0	0	0
April	0	0	0	0	0
May	1(BOB)	0	1(BOB)	0	0
	(AS: Arabian Sea)		(BOB: Bay of Bengal)		

चित्र 15 सीज़न के दौरान बनने वाली तीव्र निम्न-दबाव प्रणालियों का ट्रैक दिखाता है।

महत्वपूर्ण मौसम संबंधी घटनाएँ

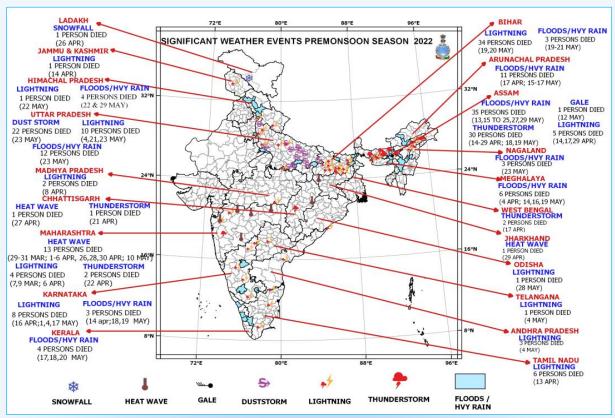
चित्र 16 सीज़न के दौरान महत्वपूर्ण मौसम की घटनाओं को दर्शाता है (वास्तविक समय की मीडिया रिपोर्टों के आधार पर)।

चित्र 15. प्री-मॉनसून सीज़न (मार्च-मई) 2022 के दौरान बने तीव्र निम्न-दबाव प्रणालियों के ट्रैक

1 मार्च से 31 मई तक, कथित तौर पर कुल 231 लोगों की मौत हो गई, 105 लोग घायल हो गए, 11 लोग लापता हो गए और 1234 पश्धन की मौत हो गई।

बाढ़, भारी बारिश और भूस्खलन : 1 मार्च से 31 मई तक बाढ़, भारी बारिश और भूस्खलन के कारण कुल 81 लोगों की कथित तौर पर मौत हो गई, 15 लोग घायल हो गए, 11 लोग लापता हो गए और 1151 पशुधन की मौत हो गई।

बिजली: 1 मार्च से 31 मई तक बिजली गिरने से कथित तौर पर कुल 76 लोगों की मौत हो गई, 36 लोग घायल हो गए और 77 पशुधन की मौत हो गई।


वज्रपात: 1 मार्च से 31 मई तक, वज्रपात के कारण कथित तौर पर कुल 35 लोगों की मौत हो गई, 54 लोग घायल हो गए और 6 पश्धन की मौत हो गई।

धूल भरी आंधी: धूल भरी आंधी के कारण 1 मार्च से 31 मई तक कथित तौर पर कुल 22 लोगों की मौत का दावा किया गया।

हीट वेव : हीट वेव के कारण 1 मार्च से 31 मई तक कथित तौर पर कुल 15 लोगों की मौत का दावा किया गया।

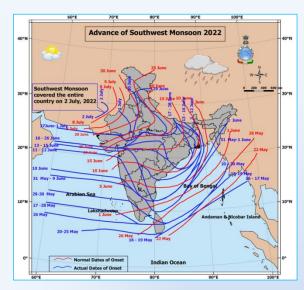
आंधी : 1 मार्च से 31 मई तक कथित तौर पर आंधी के कारण कुल 1 व्यक्ति की मौत का दावा किया गया।

बर्फबारी : बर्फबारी के कारण 1 मार्च से 31 मई तक कथित तौर पर कुल 1 व्यक्ति की मौत का दावा किया गया।

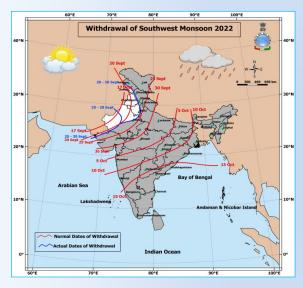
चित्र 16. प्री-मॉनसून (मार्च-मई) सीज़न 2022 के दौरान महत्वपूर्ण मौसम की घटनाएं (रियल टाइम मीडिया रिपोर्ट पर आधारित)

3. दक्षिण पश्चिम (एसडब्ल्यू) मानसून (जून-जुलाई-अगस्त-सितंबर)

मुख्य विशेषताएं


2022 के दक्षिण-पश्चिम मानसून सीज़न के दौरान वर्षा सामान्य से अधिक थी। दक्षिण-पश्चिम मानसून 2022 के दौरान, अखिल भारतीय न्यूनतम तापमान (0.43 डिग्री सेल्सियस की विसंगति के साथ 24.52 डिग्री सेल्सियस) 1901 के बाद से वर्ष 2019 (24.66 डिग्री सेल्सियस), 2020 (24.60 डिग्री सेल्सियस), 2021 (24.53 डिग्री सेल्सियस) के बाद चौथा उच्चतम था। पूर्व और पूर्वातर भारत में न्यूनतम तापमान (0.84 डिग्री सेल्सियस की विसंगति के साथ 25.03 डिग्री सेल्सियस) सबसे अधिक था और उत्तरपश्चिम भारत (0.72 डिग्री सेल्सियस की विसंगति के साथ 23.44 डिग्री सेल्सियस) भी 1901 के बाद से सबसे अधिक था। पूर्व और पूर्वातर भारत में अधिकतम तापमान (32.86 डिग्री सेल्सियस के साथ) विसंगति 1.23 डिग्री सेल्सियस) 1901 के बाद से सबसे अधिक थी। पूर्वी और पूर्वीतर भारत में औसत तापमान (1.04 डिग्री

सेल्सियस की विसंगति के साथ 28.95 डिग्री सेल्सियस) 1901 के बाद से सबसे अधिक था।

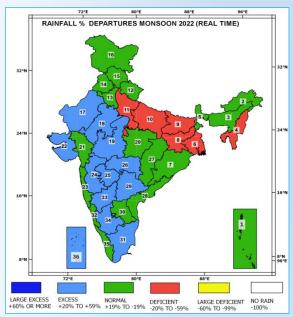

दक्षिण-पश्चिम मानसून की शुरुआत, प्रगति और वापसी

चित्र 17(ए) दक्षिण-पश्चिम मानसून के आगे बढ़ने के समकालिकता को दर्शाता है और चित्र 17(बी) दक्षिण-पश्चिम मानसून की वापसी के समकालिकता को दर्शाता है। दक्षिण-पश्चिम मॉनसून 1 जून की सामान्य तिथि के मुकाबले 29 मई, 2022 को केरल में स्थापित हुआ, यानी अपनी सामान्य तिथि से 3 दिन पहले।

3 जून को, दक्षिण-पश्चिम मॉनसून ने पूरे पूर्वोत्तर राज्यों और उप-हिमालयी पश्चिम बंगाल और सिक्किम के कुछ हिस्सों को कवर किया। 10 जून तक दक्षिण-पश्चिम मॉनसून मध्य अरब सागर के कुछ और हिस्सों, पूरे गोवा, कोंकण के कुछ हिस्सों और कर्नाटक के कुछ और हिस्सों में आगे बढ़ गया। 10 जून को मानसून की उत्तरी सीमा (एनएलएम) अक्षांश से होकर गुजरती है। 16° उत्तर/लंबाई। 60° पूर्व, अक्षांश। 16° उत्तर/लंबाई। 70° पूर्व,

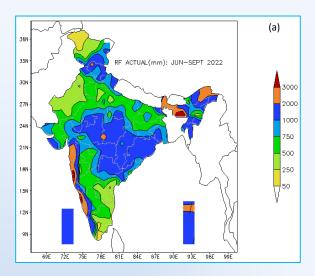
चित्र 17(ए). दक्षिण पश्चिम मानसून 2022 की प्रगति

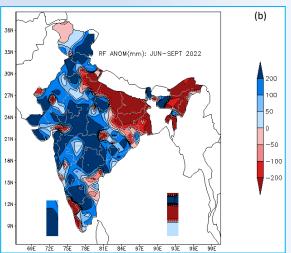
चित्र 17(बी). दक्षिण पश्चिम मानसून 2022 की वापसी


वेंगुर्ला, चिकमगल्र, बेंगलुरु, पुडुचेरी, अक्षांश, 14° उत्तर/लंबाई, 84° पूर्व, अक्षांश, 17.0° उत्तर/लंबाई, 87° पूर्व, अक्षांश, 20.0° उत्तर/89.5° पूर्व, अक्षांश, 22.0° उत्तर/90° पूर्व, अक्षांश, 25.0° उत्तर/89° पूर्व, सिलीगुड़ी और अक्षांश। 27.50° उत्तर/88° पूर्व अरब सागर और मध्य भारत और प्रायद्वीपीय भारत और पूर्वीतर भारत के कुछ हिस्सों को कवर करते हुए आगे के चरणों को कवर करता है। 15 जून तक, यह मराठवाड़ा के कुछ और हिस्सों, पूरे कर्नाटक और रायलसीमा और तमिलनाडु, तटीय आंध्र प्रदेश के कुछ हिस्सों और उत्तर-पश्चिम और पश्चिम-मध्य बंगाल की खाड़ी में आगे बढ़ गया। मानसून की उत्तरी सीमा (एनएलएम) अक्षांश से होकर गुजरी। 21° उत्तर/लंबाई, 60° पूर्व, अक्षांश, 21° उत्तर/लंबाई, 70° पूर्व, दीव, नंद्रबार,

जलगांव, परभणी, मेडक, रेंटाचिंतला, मछलीपट्टनम, लाट, 17° उत्तर/लंबाई, 84° पूर्व, अक्षांश। 18.5° उत्तर/लंबाई, 87° पूर्व, अक्षांश, 22.0° उत्तर/90° पूर्व, अक्षांश, 25.0° उत्तर/89° पूर्व, बालुरघाट और सुपौल, अक्षांश, 26.50° उत्तर/86° पूर्व, 19 जून तक, इसने गुजरात क्षेत्र, मध्य प्रदेश के कुछ और हिस्सों, विदर्भ के शेष हिस्सों, और छत्तीसगढ़, गंगीय पश्चिम बंगाल, झारखंड और बिहार के कुछ और हिस्सों को कवर कर लिया। 20 जून को, दक्षिण-पश्चिम मॉनसून मध्य प्रदेश के अधिकांश हिस्सों, छतीसगढ़ के शेष हिस्सों और तटीय आंध्र प्रदेश, उत्तर-पश्चिमी बंगाल की खाड़ी के शेष हिस्सों, पूरे ओडिशा और गंगीय पश्चिम बंगाल, झारखंड और बिहार के अधिकांश हिस्सों, के कुछ हिस्सों में आगे बढ़ा। दक्षिणपूर्व उत्तर प्रदेश. 27 जून तक लगभग एक सप्ताह के अंतराल के बाद, दक्षिण-पश्चिम मानस्न अरब सागर के अधिकांश हिस्सों और गुजरात राज्य के अधिकांश हिस्सों में आगे बढ़ गया। 30 जून तक, दक्षिण-पश्चिम मॉनसून पूरे उत्तर प्रदेश, हिमाचल प्रदेश और जम्मू-कश्मीर, राजस्थान के क्छ हिस्सों, पूरी दिल्ली, पंजाब और हरियाणा के कुछ हिस्सों में आगे बढ़ गया। मॉनसून की उत्तरी सीमा (एनएलएम) अक्षांश से होकर गुजरी, 24° उत्तर/दीर्घकालिक, 60° पूर्व, अक्षांश, 24° उत्तर/लंबाई, 65° पूर्व, दीसा, रतलाम, टोंक, सीकर, रोहतक, पठानकोट, 30 जून तक, दक्षिण-पश्चिम मॉनसून पूरे उत्तर प्रदेश, हिमाचल प्रदेश, जम्मू और कश्मीर, राजस्थान के क्छ हिस्सों, पूरी दिल्ली और पंजाब और हरियाणा के कुछ हिस्सों को कवर कर चुका था। मानसून की उत्तरी सीमा (एनएलएम) अक्षांश से होकर गुजरी। 24° उत्तर/लंबाई, 60° पूर्व, अक्षांश, 24° उत्तर/लंबाई, 65° पूर्व, दीसा, रतलाम, टोंक, सीकर, रोहतक, पठानकोट। दक्षिण-पश्चिम मॉनसून 1 जुलाई, 2022 को पूरे पंजाब और हरियाणा और राजस्थान के अधिक हिस्सों में आगे बढ़ा। एसडब्ल्यू मॉनसून 2 जुलाई, 2022 को उत्तरी अरब सागर, ग्जरात और राजस्थान के शेष हिस्सों में आगे बढ़ा। मानसून ने 2 जुलाई, 2022 को पूरे देश को कवर किया, जबिक इसकी सामान्य तिथि 8 ज्लाई थी (पूरे भारत को कवर करने की सामान्य तिथि से 6 दिन पहले)। दक्षिण पश्चिम राजस्थान और निकटवर्ती कच्छ से एसडब्ल्यू मानसून की वापसी 17 सितंबर की सामान्य तिथि के मुकाबले 20 सितंबर, 2022 को शुरू हुई।

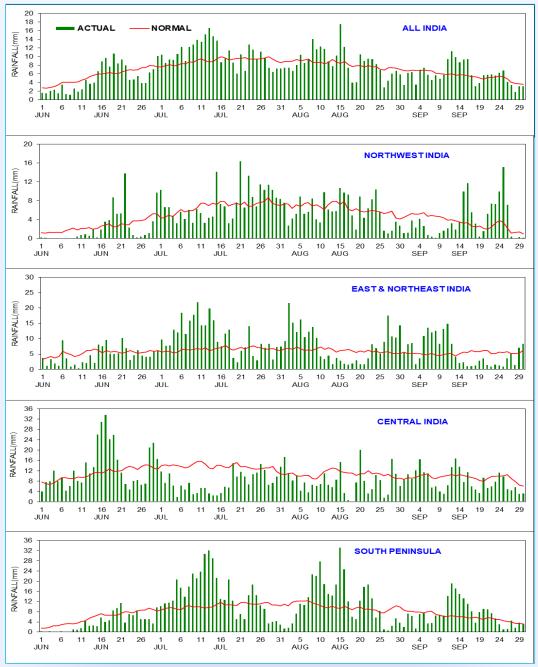
दक्षिण-पश्चिम मानसून की वापसी रेखा 20 तारीख को खाजूवाला, बीकानेर, जोधपुर और नलिया से होकर गुजरी और 28 सितंबर 2022 तक वहीं रही। इसके बाद यह पूरे पंजाब और चंडीगढ़, जम्मू और कश्मीर के कुछ हिस्सों, हिमाचल प्रदेश, पश्चिम से वापस चली गई। 29 सितंबर, 2022 को उत्तर प्रदेश और हरियाणा, पूरी दिल्ली और राजस्थान के कुछ और हिस्से।


वर्षा की विशेषताएं


नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, गांगेय पश्चिम बंगाल, झारखंड, बिहार और पूर्व और पश्चिम उत्तर प्रदेश को छोड़कर देश के अधिकांश उप-मंडलों में अधिक/सामान्य वर्षा हुई। सीज़न के दौरान, 36 मौसम उपविभागों में से 12 उपविभागों में अधिक वर्षा हुई, 18 में सामान्य वर्षा हुई और शेष 6 उपविभागों में कम वर्षा हुई (चित्र 18)। तालिका 1 2022 के दक्षिण-पश्चिम मानसून सीज़न के लिए उपखंड-वार वर्षा के आंकड़े (मिमी) दिखाती है।

चित्र 18. मानसून 2022 के लिए उप-विभागवार वर्षा प्रतिशत प्रस्थान

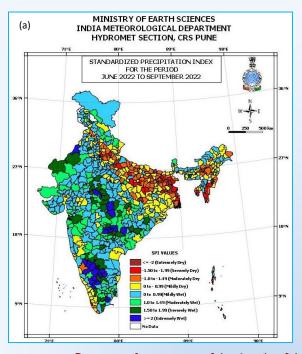
चित्र 19(ए&बी) क्रमशः मौसम के दौरान प्राप्त वर्षा का स्थानिक पैटर्न और इसकी विसंगति (मिमी) दर्शाता है। पूर्वोत्तर भारत के अधिकांश हिस्सों, मध्य भारत, उत्तर भारत, पश्चिमी तट और दोनों द्वीपों में 1000 मिमी से अधिक वर्षा हुई। अरुणाचल प्रदेश, असम और मेघालय के कुछ हिस्सों, उप हिमालयी पश्चिम बंगाल और सिक्किम, पूरे पश्चिमी तट, पूर्वी मध्य प्रदेश और अंडमान और निकोबार द्वीप समूह में 2000 मिमी से अधिक वर्षा हुई। असम और मेघालय के कुछ हिस्सों और पश्चिमी तट पर 3000 मिमी से अधिक वर्षा हुई।

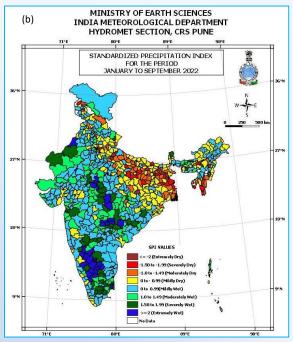


चित्र 19(ए&बी). (ए) मौसमी वर्षा (मिमी) (बी) मौसमी वर्षा विसंगति (मिमी) (1961-2010 सामान्य के आधार पर)

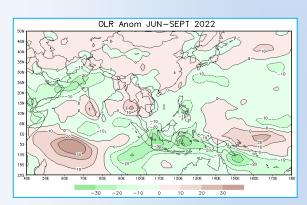
पूर्व और उत्तर-पूर्व भारत के कुछ हिस्सों को छोड़कर देश के अधिकांश उपखंडों और दोनों द्वीपों पर 200 मिमी से अधिक की सकारात्मक वर्षा विसंगति देखी गई। अरुणाचल प्रदेश, असम और मेघालय, नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, गांगेय पश्चिम बंगाल, बिहार, पूर्वी और पश्चिमी उत्तर प्रदेश, ओडिशा, केरल और माहे और अंडमान और निकोबार द्वीप के कुछ हिस्सों में नकारात्मक वर्षा विसंगति की तीव्रता 200 मिमी से अधिक थी।

चित्र 20 पूरे देश और मौसम के दौरान चार सजातीय क्षेत्रों में दैनिक क्षेत्र-भारित औसत वर्षा (मिमी में) और इसके दीर्घकालिक सामान्य को दर्शाता है। देश भर में औसत वर्षा 9 दिनों में सामान्य से ऊपर या उसके करीब थी। जून के दौरान, जुलाई के दौरान 23 दिन, अगस्त के दौरान 15 दिन और सितंबर के दौरान 15 दिन।




चित्र 20. दैनिक क्षेत्र भारित औसत वर्षा (मिमी) और समग्र रूप से देश और चार सजातीय क्षेत्रों के लिए इसका दीर्घकालिक सामान्य (1 जून - 30 सितंबर)

12-14 जुलाई और 11-16 सितंबर की निरंतर अवधि सिंहत लगभग 15 मौकों पर यह अपने सामान्य मूल्य से डेढ़ गुना से अधिक था। 1-14 जून, 23-28 जून, 28 को यह सामान्य से कम था। जुलाई - 4 अगस्त, 26-31 अगस्त (29 अगस्त को छोड़कर) और 26-29 सितंबर।


मानकीकृत वर्षा सूचकांक

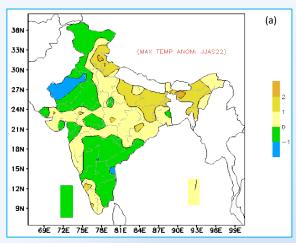
चित्र 21(ए&बी) क्रमशः मानसून सीज़न (चार महीने) और जनवरी 2022 से वर्ष (नौ महीने) के लिए एसपीआई मान देते हैं। पिछले चार महीनों के संचयी एसपीआई मूल्यों से पता चलता है कि असम और मेघालय, ओडिशा, हरियाणा, चंडीगढ़ और दिल्ली, जम्मू और कश्मीर और लद्दाख, राजस्थान राज्य, मध्य प्रदेश राज्य, गुजरात क्षेत्र, मध्य महाराष्ट्र के कुछ हिस्सों में अत्यधिक गीली/गंभीर रूप से गीली स्थिति है। विदर्भ, छत्तीसगढ़, तेलंगाना, रायलसीमा, तिमलनाडु और कराईकल, उत्तर आंतरिक कर्नाटक, दक्षिण आंतरिक कर्नाटक और लक्षद्वीप, जबिक अंडमान और निकोबार द्वीप समूह, असम और मेघालय, नागालैंड, मणिप्र, मिजोरम के कुछ हिस्सों में अत्यधिक

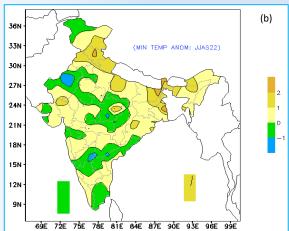
चित्र 21(ए&बी). (ए) चार महीने (बी) नौ महीने के लिए मानकीकृत वर्षा सूचकांक (एसपीआई)

चित्र 22. मानसून सीजन 2020 के लिए ओएलआर विसंगति (डब्ल्यू/एम²) (*स्रोत*: सीडीसी/एनओएए, यूएसए) (1981-2010 जलवायु विज्ञान पर आधारित)

शुष्क/गंभीर शुष्क स्थिति देखी गई। और त्रिपुरा, उप हिमालयी पश्चिम बंगाल और सिक्किम, गांगेय पश्चिम बंगाल, झारखंड, बिहार, उत्तर प्रदेश राज्य, हरियाणा, चंडीगढ़ और दिल्ली, छत्तीसगढ़, और केरल और माहे।

पिछले नौ महीनों के संचयी एसपीआई मूल्यों से संकेत मिलता है, असम और मेघालय, उप हिमालयी पश्चिम बंगाल और सिक्किम, ओडिशा, उत्तराखंड, राजस्थान राज्य, मध्य प्रदेश राज्य, गुजरात क्षेत्र, मध्य महाराष्ट्र, विदर्भ, छत्तीसगढ़ के कुछ हिस्सों में अत्यधिक गीली/गंभीर रूप से गीली स्थिति। तेलंगाना, रायलसीमा, तमिलनाडु और कराईकल, उत्तरी आंतरिक कर्नाटक, दक्षिणी आंतरिक कर्नाटक और लक्षद्वीप, जबकि असम और मेघालय,

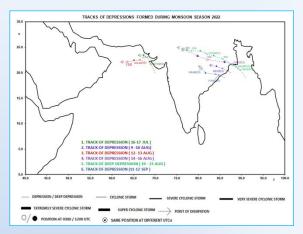

नागालैंड, मणिपुर, मिजोरम और त्रिपुरा, गंगीय पश्चिम बंगाल, झारखंड के कुछ हिस्सों में अत्यधिक शुष्क/गंभीर शुष्क स्थिति देखी गई। बिहार, उत्तर प्रदेश राज्य, हरियाणा, चंडीगढ़ और दिल्ली, जम्मू और कश्मीर और लददाख, और छत्तीसगढ़।


आउटगोइंग लॉन्गवेव रेडिएशन (ओएलआर)

भारतीय क्षेत्र और पड़ोस में ओएलआर विसंगति (डब्ल्यू/एम²) चित्र 22 में दिखाई गई है। चरम उत्तरी, पूर्व और उत्तरपूर्वी और दिक्षण प्रायद्वीप के दिक्षण-पिश्चमी हिस्सों को छोड़कर पूरे देश में ओएलआर विसंगति नकारात्मक थी। OLR विसंगति सामान्य सीमा ± 10 W/m² के भीतर थी। पिश्चमी राजस्थान के कुछ हिस्सों में ओएलआर विसंगति -20 डब्ल्यू/एम² से कम थी।

तापमान

औसत मौसमी अधिकतम और न्यूनतम तापमान विसंगति को चित्र में दिखाया गया है। चित्र 23(ए&बी)। उत्तर पश्चिम भारत, मध्य भारत, दक्षिण प्रायद्वीपीय भारत और लक्षद्वीप के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में अधिकतम तापमान सामान्य से ऊपर था। हिमाचल प्रदेश, असम और मेघालय के कुछ हिस्सों में अधिकतम तापमान विसंगति 2 डिग्री सेल्सियस से अधिक थी। पश्चिम राजस्थान, हरियाणा,


चित्र 23(ए&बी). औसत मौसमी तापमान विसंगतियाँ (डिग्री सेल्सियस) (ए) अधिकतम (बी) न्यूनतम (1981-2010 सामान्य पर आधारित)

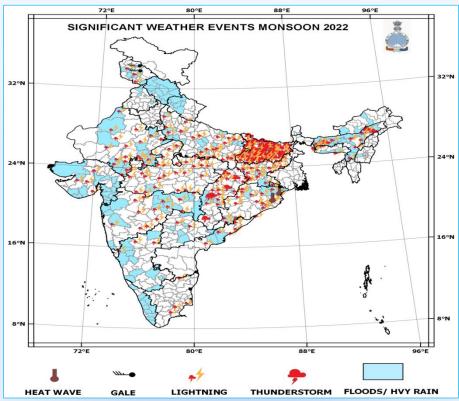
चंडीगढ़ और दिल्ली, उत्तरी आंतरिक कर्नाटक और तटीय आंध्र प्रदेश और यानम के कुछ हिस्सों में अधिकतम तापमान विसंगति -1 डिग्री सेल्सियस से कम थी।

मध्य भारत, उत्तर पश्चिम भारत, दक्षिण प्रायद्वीपीय भारत और लक्षद्वीप के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में न्यूनतम तापमान सामान्य से ऊपर था। हिमाचल प्रदेश, बिहार, पश्चिम बंगाल राज्य और सिक्किम के कुछ हिस्सों में न्यूनतम तापमान विसंगति 2 डिग्री सेल्सियस से अधिक थी। पश्चिमी राजस्थान, पूर्वी मध्य प्रदेश, उत्तरी आंतरिक कर्नाटक और तटीय आंध्र प्रदेश और यनम के कुछ हिस्सों में न्यूनतम तापमान विसंगति -1 डिग्री सेल्सियस से कम थी।

कम दबाव प्रणाली

सीज़न के दौरान, बारह निम्न दबाव प्रणालियाँ (1 डीप डिप्रेशन, 5 डिप्रेशन, 2 अच्छी तरह से चिहिनत निम्न दबाव क्षेत्र, 2 निम्न दबाव क्षेत्र और 2 भूमि निम्न दबाव क्षेत्र) बनीं।

चित्र 24. दक्षिण-पश्चिम मानसून सीज़न 2022 के दौरान बने तीव्र निम्न दबाव प्रणालियों के ट्रैक


चित्र 25. दक्षिण पश्चिम मानसून सीज़न (2013-2022) के दौरान बने अवसादों और चक्रवाती तूफानों की संख्या

चित्र 24 सीज़न के दौरान बनने वाली तीव्र निम्न दबाव प्रणाली का ट्रैक दिखाता है।

चित्र 25 पिछले 10-वर्ष की अवधि (2013-2022) में दक्षिण-पश्चिम मानसून के मौसम के दौरान बने अवसादों और चक्रवाती तूफानों की संख्या को दर्शाता है।

दक्षिण पश्चिम मानसून के मौसम के दौरान भारतीय क्षेत्र में बनने वाली इन निम्न दबाव प्रणालियों की आवृत्ति और उत्पत्ति का स्थान नीचे दिखाया गया है:

Month/ Systems	DD	D	WML	LPA	LAND LPA
June	0	0	0	1(AS)	0
July	0	1 (AS)	1 (BOB), 1 (LAND)	0	1
August	1(BOB)	2 (BOB),1 (AS)	0	0	0
September	0	1(BOB)	0	1(BOB)	1
	(AS: Arabian Sea)		(BOB: Bay of Bengal)		

चित्र 26. दक्षिण पश्चिम मानसून सीजन 2022 के दौरान महत्वपूर्ण मौसम की घटनाएं (रियल टाइम मीडिया रिपोर्ट पर आधारित)

महत्वपूर्ण मौसम संबंधी घटनाएँ

चित्र 26 दक्षिण-पश्चिम सीज़न के दौरान महत्वपूर्ण मौसम की घटनाओं को दर्शाता है (वास्तविक समय की मीडिया रिपोर्टों के आधार पर)। 1 जून से 30 सितम्बर तक कथित तौर पर कुल 1323 व्यक्तियों के मरने का दावा किया गया, 430 से अधिक व्यक्ति घायल हुए, जो कि इससे भी अधिक है। 100 व्यक्ति लापता थे और 1,18,000 से अधिक पशुधन मारे गए। वास्तविक समय की मीडिया रिपोर्टों के आधार पर हताहतों की संख्या का विवरण नीचे दिया गया है:

बाढ़, भारी बारिश और भूस्खलन : दक्षिण-पश्चिम मानसून 2022 के दौरान बाढ़, भारी बारिश और भूस्खलन के कारण कुल 619 लोगों की कथित तौर पर मौत हो गई, 160 से अधिक लोग घायल हो गए, 100 से अधिक लोग लापता हो गए और 1,17,000 से अधिक पशुधन की मौत हो गई। भूस्खलन.

बिजली : मानसून 2022 के दौरान बिजली गिरने से कथित तौर पर कुल 523 लोगों की मौत हो गई, 257 लोग घायल हो गए और 318 पशुधन की मौत हो गई। वज्रपात : मानसून 2022 के दौरान, वज्रपात के कारण कथित तौर पर कुल 174 लोगों की मौत हो गई, 9 लोग घायल हो गए और 62 पशुधन की मौत हो गई।

हीट वेव : मॉनसून 2022 के दौरान हीट वेव के कारण कथित तौर पर कुल 3 लोगों की मौत हो गई।

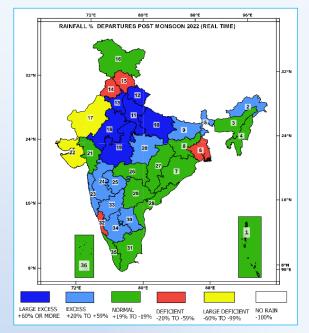
आंधी : मानसून 2022 के दौरान आंधी के कारण कथित तौर पर कुल 4 लोगों की मौत हो गई और 8 लोग घायल हो गए।

4. मानसून के बाद का मौसम (अक्टूबर-नवंबर-दिसंबर)

प्रमुखता

संपूर्ण देश में, 1901 के बाद से मानसून के बाद का औसत तापमान 5^{वां} उच्चतम (0.52 डिग्री सेल्सियस की विसंगति के साथ 23.76 डिग्री सेल्सियस) था। पूर्वी और पूर्वीतर भारत में अधिकतम तापमान दूसरा सबसे अधिक (28.69 डिग्री सेल्सियस) था। वर्ष 2016 (28.77 डिग्री सेल्सियस) के बाद 1.10 डिग्री सेल्सियस की विसंगति

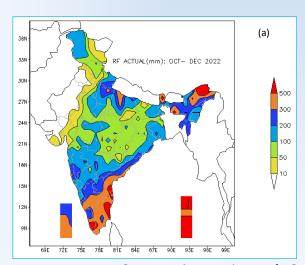
और औसत तापमान (0.91 डिग्री सेल्सियस की विसंगति के साथ 22.65 डिग्री सेल्सियस) 1901 के बाद से सबसे अधिक था।

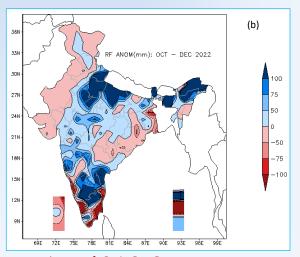

पूर्वोत्तर मानसून गतिविधि

दक्षिण-पश्चिम मानसून 23 अक्टूबर को पूरे देश से वापस चला गया और 29 अक्टूबर से उत्तर-पूर्वी मानसून की बारिश शुरू हो गई। पूरे मौसम के दौरान दक्षिण प्रायद्वीपीय भारत के मुख्य क्षेत्र (जिसमें 5 उपखंड शामिल हैं, तटीय आंध्र प्रदेश और यनम, रायलसीमा, तमिलनाडु, पुडुचेरी और कराईकल, दक्षिण आंतरिक कर्नाटक और केरल और माहे) में वर्षा गतिविधि कुल मिलाकर 110% थी। यह एलपीए है। अक्टूबर के दौरान यह एलपीए का 108%, नवंबर के दौरान एलपीए का 85% और दिसंबर के दौरान एलपीए का 186% था।

वर्षा की विशेषताएं

पूरे देश में सीज़न के दौरान हुई वर्षा एलपीए की 119% थी। गांगेय पश्चिम बंगाल, पंजाब, हिमाचल प्रदेश, तटीय कर्नाटक, पश्चिम राजस्थान और सौराष्ट्र और कच्छ को छोड़कर अधिकांश उपसंभागों में अधिक/अधिक/सामान्य वर्षा हुई। सीज़न के दौरान, 36 मौसम उपविभागों में से 6 में अधिक वर्षा हुई, 10 में अधिक वर्षा हुई, 14 में सामान्य वर्षा हुई, 4 में कम वर्षा हुई और 2 में बहुत कम वर्षा हुई (चित्र 27)।

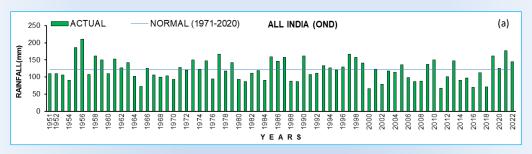

चित्र 28(ए&बी) क्रमशः मौसम के दौरान प्राप्त वर्षा (मिमी) के स्थानिक पैटर्न और इसकी विसंगति को

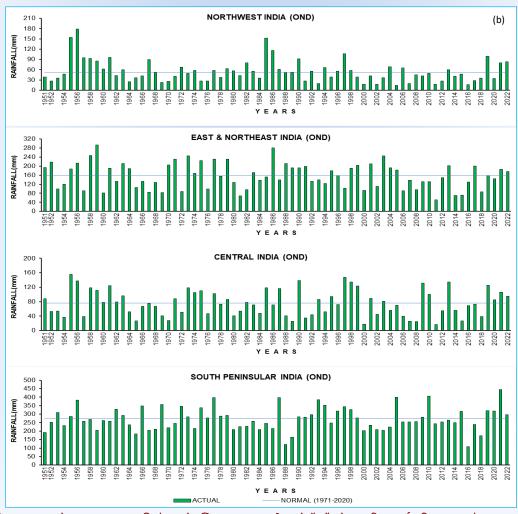


चित्र 27. उपखण्डवार वर्षा प्रतिशत प्रस्थान

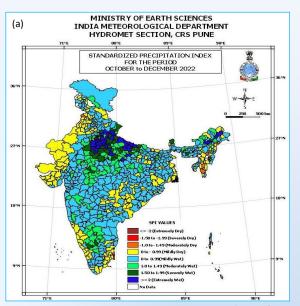
दर्शाता है। अरुणाचल प्रदेश, असम और मेघालय के कुछ हिस्सों, उप हिमालयी पश्चिम बंगाल और सिक्किम, पूर्वी उत्तर प्रदेश, तटीय आंध्र प्रदेश, रायलसीमा, तिमलनाडु, पुडुचेरी और कराईकल, दक्षिण आंतरिक कर्नाटक, केरल और माहे और दोनों द्वीपों में 300 मिमी से अधिक वर्षा हुई। अरुणाचल प्रदेश, तटीय आंध्र प्रदेश, तिमलनाडु, पुदुचेरी और कराईकल, केरल और माहे और अंडमान और निकोबार द्वीप समूह के कुछ हिस्सों में 500 मिमी से अधिक वर्षा हुई।

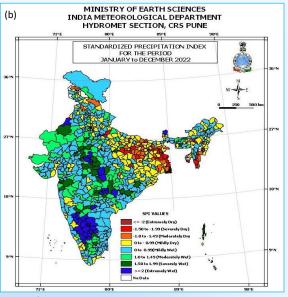
अरुणाचल प्रदेश, असम और मेघालय, उप हिमालयी पश्चिम बंगाल और सिक्किम, पूर्वी और पश्चिमी उत्तर प्रदेश, उत्तराखंड, पूर्वी राजस्थान, पश्चिम मध्य प्रदेश,




चित्र 28(ए&बी). (ए) मौसमी वर्षा (मिमी) (बी) मौसमी वर्षा विसंगति (मिमी) (1951-2000 सामान्य पर आधारित)

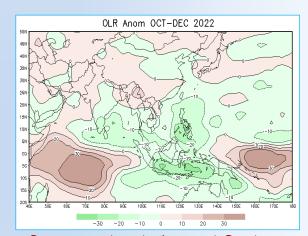
तटीय आंध्र प्रदेश, रायलसीमा, तमिलनाडु, पुडुचेरी और कराईकल के कुछ हिस्सों में वर्षा विसंगति 100 मिमी से अधिक थी। कोंकण और गोवा, दक्षिण आंतरिक कर्नाटक और अंडमान और निकोबार द्वीप समूह। तमिलनाडु, पुडुचेरी और कराईकल, केरल और माहे, तटीय कर्नाटक और अंडमान और निकोबार द्वीप समूह के कुछ हिस्सों में नकारात्मक वर्षा विसंगति का परिमाण 100 मिमी से अधिक था।


1951 से अब तक के मौसम के लिए अखिल भारतीय क्षेत्र भारित वर्षा शृंखला [चित्र 29(ए)]. 1951 के बाद से चार सजातीय क्षेत्रों में सीज़न के लिए क्षेत्र भारित वर्षा शृंखला [चित्र 29(बी)]. यह उत्तर-पश्चिम भारत में इसके एलपीए का 157%, मध्य भारत में इसके एलपीए का 125%, पूर्व और उत्तर-पूर्व भारत में इसके एलपीए का 111% और दक्षिण प्रायद्वीप पर इसके एलपीए का 109% था।



चित्र 29(ए). मानसून के बाद भारित क्षेत्र की समय श्रृंखला (अक्टूबर-दिसंबर) (1951-2022) पूरे देश में वर्षा

चित्र 29(बी). मानसून के बाद (अक्टूबर-दिसंबर) के लिए चार सजातीय क्षेत्रों में क्षेत्र भारित वर्षा की समय शृंखला (1951 - 2022)

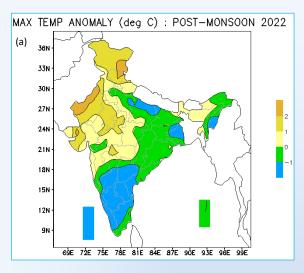

चित्र 30(ए% बी). मानकीकृत वर्षा सूचकांक (एसपीआई) संचयी (ए) तीन महीने (बी) बारह महीने

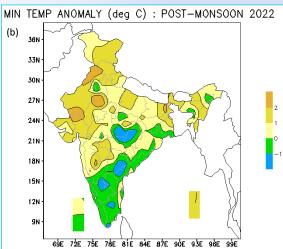
मानकीकृत वर्षा सूचकांक

चित्र 30(ए&बी) क्रमशः उत्तर-पूर्वी मानसून सीज़न (अक्टूबर से दिसंबर 2022, यानी, 3 महीने संचयी) और वर्ष (जनवरी-दिसंबर 2022, यानी, 12 महीने संचयी) के लिए एसपीआई मान देते हैं।

पिछले तीन महीनों के संचयी एसपीआई मूल्य अरुणाचल प्रदेश, असम और मेघालय, उप-हिमालयी पश्चिम बंगाल और सिक्किम, उत्तर प्रदेश राज्य, उत्तराखंड, हरियाणा, चंडीगढ़ और दिल्ली, पूर्वी राजस्थान, पश्चिम मध्य प्रदेश के कुछ हिस्सों में अत्यधिक गीली - गंभीर रूप से गीली स्थितियों का संकेत देते हैं। और दक्षिण आंतरिक कर्नाटक, जबिक देश के किसी भी हिस्से में अत्यधिक शुष्क-गंभीर शुष्क स्थिति नहीं देखी गई।

पिछले बारह महीनों के संचयी एसपीआई मूल्य ए और एन द्वीप समूह, असम और मेघालय, उप हिमालयी पश्चिम बंगाल और सिक्किम, ओडिशा, उत्तर प्रदेश राज्य, राजस्थान राज्य, मध्य प्रदेश राज्य, गुजरात क्षेत्र के कुछ हिस्सों में अत्यधिक गीली - गंभीर रूप से गीली स्थितियों का संकेत देते हैं। कोंकण और गोवा, मध्य महाराष्ट्र, विदर्भ, छत्तीसगढ़, तेलंगाना, रायलसीमा, तिमलनाडु, उत्तरी आंतरिक कर्नाटक, दिक्षणी आंतरिक कर्नाटक और लक्षद्वीप, जबिक असम और मेघालय, नागालैंड, मणिपुर, मिजोरम और के कुछ हिस्सों में अत्यधिक शुष्क-गंभीर शुष्क स्थिति देखी गई। त्रिपुरा, गांगेय पश्चिम बंगाल, झारखंड, बिहार, उत्तर प्रदेश राज्य और छत्तीसगढ़।


चित्र 31. मानसून के बाद के मौसम 2022 के लिए ओएलआर विसंगति (डब्ल्यू/एम॰) (स्रोत: सीडीसी/एनओएए, यूएसए) (1981-2010 जलवाय् विज्ञान पर आधारित)


दबाव और हवा

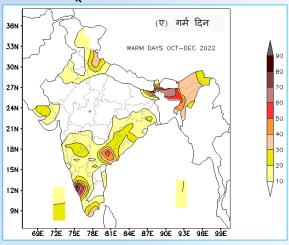
कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में दबाव विसंगति नकारात्मक थी। देश के अधिकांश हिस्सों में नकारात्मक दबाव विसंगति आम तौर पर -0.5 से -1.5 hPa से कम थी।

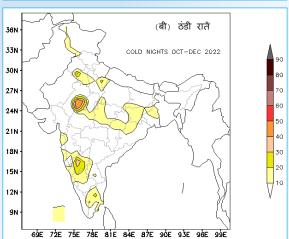
आउटगोइंग लॉन्गवेव रेडिएशन (ओएलआर)

भारतीय क्षेत्र और पड़ोस में ओएलआर विसंगति (डब्ल्यू/एम²) चित्र 31 में दिखाई गई है। ओएलआर विसंगति दक्षिण पूर्व प्रायद्वीप और निकटवर्ती बंगाल की खाड़ी के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में सामान्य सीमा ± 10 डब्ल्यू/एम2 के भीतर थी। यह -10 W/m² से कम था।

चित्र 32(ए& बी). औसत मौसमी तापमान विसंगतियाँ (डिग्री सेल्सियस) (ए) अधिकतम (बी) न्यूनतम (1981-2010 सामान्य पर आधारित)

तापमान

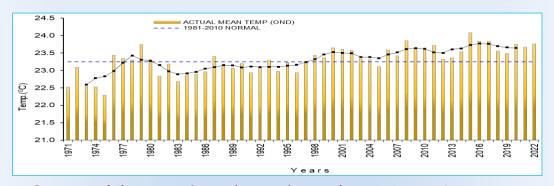

औसत मौसमी अधिकतम और न्यूनतम तापमान विसंगति क्रमशः चित्र 32 (ए और बी) में दिखाई गई है।

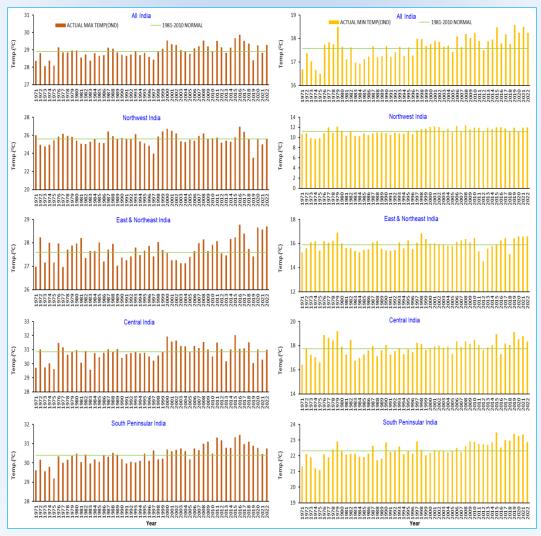

पूर्व और पूर्वोत्तर भारत, उत्तर-पश्चिम भारत, पूर्व-मध्य भारत, दिक्षण प्रायद्वीपीय भारत, दोनों द्वीपों के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में तापमान सामान्य से ऊपर रहा। लद्दाख राज्य, हिमाचल प्रदेश, पंजाब, पश्चिम राजस्थान और सौराष्ट्र और कच्छ के कुछ हिस्सों में अधिकतम तापमान विसंगति 2 डिग्री सेल्सियस से अधिक थी। उत्तर प्रदेश राज्य, बिहार, गंगा के तटवर्ती पश्चिम बंगाल, कर्नाटक राज्य, तेलंगाना, आंध्र प्रदेश राज्य, तमिलनाडु, पुडुचेरी और कराईकल, केरल और माहे और लक्षद्वीप के कुछ हिस्सों में अधिकतम तापमान विसंगति -1 डिग्री सेल्सियस से कम थी।

उत्तर-पश्चिम भारत (हरियाणा, चंडीगढ़ और दिल्ली), पूर्व और उत्तर-पूर्व भारत, मध्य भारत, दक्षिण प्रायद्वीपीय भारत और लक्षद्वीप के कुछ हिस्सों को छोड़कर देश के अधिकांश हिस्सों में न्यूनतम तापमान सामान्य से ऊपर था। पंजाब, राजस्थान राज्य, बिहार, गुजरात क्षेत्र और दक्षिणी मध्य महाराष्ट्र के कुछ हिस्सों में न्यूनतम तापमान विसंगति 2 डिग्री सेल्सियस से अधिक थी। पूर्वी मध्य प्रदेश, छत्तीसगढ़, विदर्भ, तेलंगाना, आंध्र प्रदेश राज्य, दक्षिण आंतरिक कर्नाटक और तमिलनाडु, पुदुचेरी और कराईकल के कुछ हिस्सों में न्यूनतम तापमान विसंगति -1 डिग्री सेल्सियस से कम थी।

गर्म दिन/ठंडी रातों का प्रतिशत

चित्र 33(ए&बी) उन दिनों का प्रतिशत दर्शाता है जब अधिकतम (न्यूनतम) तापमान 90^{वें} (10^{वें}) प्रतिशत से अधिक (कम) था। असम और मेघालय, उप हिमालयी पश्चिम बंगाल और सिक्किम, तटीय आंध्र प्रदेश, तेलंगाना और केरल और माहे के कुछ हिस्सों में मौसम के 50% से अधिक दिनों में अधिकतम तापमान 90 प्रतिशत से अधिक था। न्यूनतम तापमान के लिए ऐसा कोई महत्वपूर्ण वितरण नहीं देखा गया।

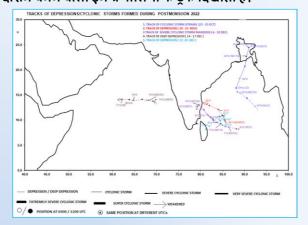



चित्र 33(ए& बी). उन दिनों का प्रतिशत जब (ए) अधिकतम तापमान > 90 प्रतिशत (बी) न्यूनतम तापमान <10 प्रतिशत

चित्र 34. 1971 के बाद से मानसून के बाद के मौसम के लिए पूरे देश के औसत तापमान समय शृंखला को दर्शाता है। पांच साल की चलती औसत मान भी दिखाए गए हैं। पूरे देश में इस वर्ष मौसम का औसत तापमान 1901 के बाद से 5^{वां} उच्चतम (0.52 डिग्री सेल्सियस की विसंगति के साथ 23.76 डिग्री सेल्सियस) था। पूर्वी और पूर्वोत्तर भारत में औसत तापमान (0.91 की विसंगति के साथ 22.65 डिग्री सेल्सियस) था डिग्री सेल्सियस) 1901 के बाद से सबसे अधिक था।

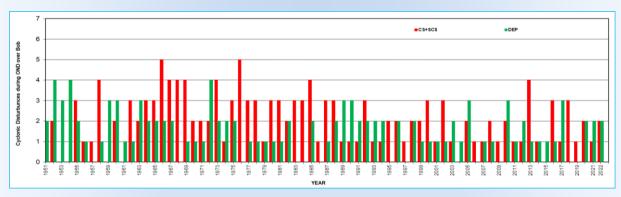
चित्र 35 (ए और बी) 1971 के बाद से मानसून के बाद 2022 के दौरान पूरे देश और चार सजातीय क्षेत्रों के लिए क्रमशः अधिकतम और न्यूनतम तापमान शृंखला दिखाता है।

चित्र 34. भारत में औसत तापमान की समय शृंखला (ऊर्ध्वाधर बार) और मानसून के बाद के मौसम (1971-2022) के लिए पांच साल चलने वाले औसत तापमान (निरंतर रेखा)


चित्र **35(ए% बी). मानसून के बाद (अक्टूबर-दिसंबर)** (1971-2022) (**ए) अधिकतम (बी) न्यूनतम के लिए पूरे देश** और चार सजातीय क्षेत्रों के लिए तापमान की समय शृंखला

कम दबाव प्रणाली

सीज़न के दौरान, सात निम्न दबाव प्रणालियाँ (2 चक्रवाती तूफान, 3 अवसाद, 1 अच्छी तरह से चिहिनत निम्न और 1 निम्न दबाव क्षेत्र) बनीं। मानसून के बाद के मौसम के दौरान भारतीय क्षेत्र में बनने वाली इन निम्न दबाव प्रणालियों की आवृति और उत्पत्ति का स्थान नीचे दी गई तालिका में दिखाया गया है:


Month/ Systems	CS and above	DD	D	WML	LPA
October	1 (BOB)				1(BOB)
November			1(BOB)	1 (BOB)	
December	1 (BOB)	1 (AR SEA)	1 (BOB)		
	(AS : Ara	abian Sea)	(BOB	: Bay of B	engal)

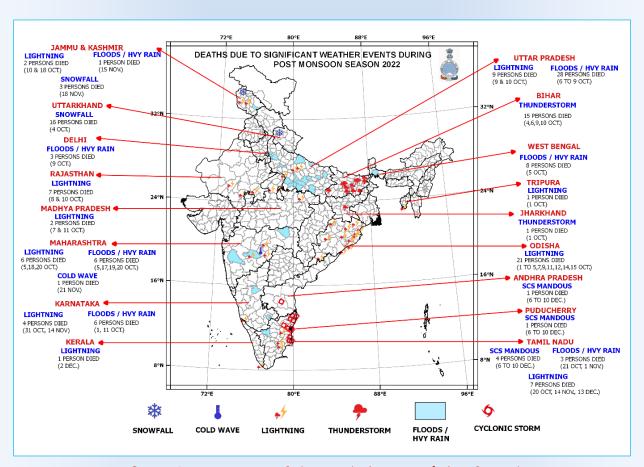
अक्टूबर 2022 के दौरान चक्रवाती तूफान "सितरंग" और 22-25 अक्टूबर, 2022 की अविध के दौरान बंगाल की खाड़ी के ऊपर एक कम दबाव का क्षेत्र बना। नवंबर 2022 के दौरान बंगाल की खाड़ी के ऊपर 20-22 नवंबर, 2022 के दौरान एक कम दबाव का क्षेत्र बना। इस डिप्रेशन के अलावा 9-14 नवंबर 2022 के दौरान खाड़ी के ऊपर एक अच्छी तरह से चिह्नित निम्न दबाव का क्षेत्र बना। दिसंबर 2022 के दौरान, 6-10 दिसंबर की अविध के दौरान बंगाल की खाड़ी के ऊपर गंभीर चक्रवाती तूफान "मांडौस" बना। गंभीर चक्रवाती तूफान के अलावा तूफान "मांडौस", अरब सागर के ऊपर 14-17 दिसंबर के दौरान एक गहरा दबाव और 22-25 दिसंबर के दौरान बंगाल की खाड़ी के ऊपर एक दबाव का क्षेत्र बना। चित्र 36 सीज़न के दौरान बनने वाली इन प्रणालियों के ट्रैक दिखाता है।

चित्र 36. पोस्ट-मॉनसून सीज़न 2022 के दौरान बने तीव्र निम्न दबाव प्रणाली के ट्रैक

चित्र 37. मानसून के बाद के मौसम (1951-2022) के दौरान बंगाल की खाड़ी के ऊपर बने दबावों और तूफानों की संख्या को दर्शाता है।

चित्र 37. बंगाल की खाड़ी के ऊपर बने अवसादों। चक्रवाती तूफानों की आवृति की समय शृंखला मानसून के बाद के मौसम अक्टूबर-दिसंबर (1951-2022) के दौरान (डेटा स्रोत: साइक्लोन एटलस आरएसएमसी आईएमडी नई दिल्ली) वास्तविक समय डेटा पर आधारित

महत्वपूर्ण मौसम संबंधी घटनाएँ


1 अक्टूबर से 31 दिसंबर, 2022 के दौरान कथित तौर पर कुल 157 लोगों की मौत हो गई, 85 से ज्यादा लोग घायल हो गए, 15 से ज्यादा लोग लापता हो गए और 68 पशुधन की मौत हो गई। कारणों का विवरण नीचे दिया गया है, जो वास्तविक समय की मीडिया रिपोर्टों और अन्य राज्य सरकार एजेंसियों पर आधारित है। चित्र 38 मानसून के बाद के मौसम के दौरान महत्वपूर्ण मौसम की घटनाओं को दर्शाता है। (वास्तविक मीडिया रिपोर्टी पर आधारित)

बिजली: 1 अक्टूबर से 31 दिसंबर के दौरान बिजली गिरने से कथित तौर पर कुल 60 लोगों की मौत हो गई, 58 लोग घायल हो गए और 68 पशुधन की मौत हो गई। बाढ़, भारी बारिश और भूस्खलन : 1 अक्टूबर से 31 दिसंबर के दौरान बाढ़, भारी बारिश और भूस्खलन के कारण कुल 55 लोगों की कथित तौर पर मौत हो गई, 25 से अधिक लोग घायल हो गए और कई अन्य लापता हो गए।

बर्फबारी: बर्फबारी के कारण 1 अक्टूबर से 31 दिसंबर के दौरान कथित तौर पर कुल 19 लोगों की मौत और 15 अन्य के लापता होने का दावा किया गया है।

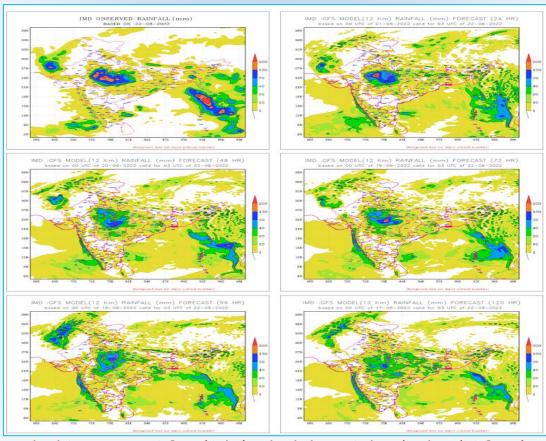
वज़पात: 1 अक्टूबर से 31 दिसंबर के दौरान, वज़पात के कारण कथित तौर पर कुल 16 लोगों की मौत हो गई और 2 लोग घायल हो गए। चक्रवाती तूफान: गंभीर चक्रवाती तूफान "मैंडोस" के कारण कथित तौर पर कुल 6 लोगों की मौत का दावा किया गया है। अन्नामय्या, चित्र, नेल्लोर, प्रकाशम, तिरुपति और आंध्र प्रदेश के कुछ हिस्से भी गंभीर चक्रवाती तूफान "मांडौस" के कारण प्रभावित हुए, जबिक चक्रवाती तूफान "सीत्रंग" (22 से 25 अक्टूबर) ने असम और मिजोरम के हिस्सों को प्रभावित किया।

शीत लहर: 21 नवंबर को महाराष्ट्र के प्रभानी जिले में शीत लहर के कारण एक व्यक्ति की कथित तौर पर मौत हो गई।

चित्र. 38. पोस्ट मानसून (अक्टूबर-दिसंबर) 2022 के दौरान महत्वपूर्ण मौसम की घटनाएं (रियल टाइम मीडिया रिपोर्ट पर आधारित)

अध्याय 3

संख्यात्मक मौसम भविष्यवाणी

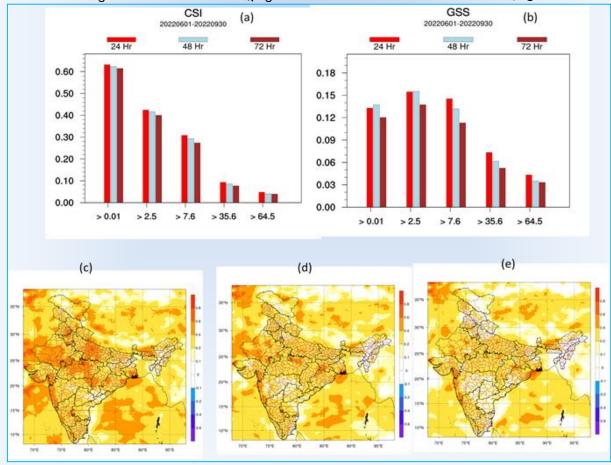

वैश्विक और क्षेत्रीय मॉडलिंग (एनडब्ल्यूपी)

जीएफएस मॉडल

वैश्विक पूर्वानुमान प्रणाली (जीएफएस टी1534एल64) मॉडल को भारत मौसम विज्ञान विभाग (आईएमडी) में एक दिन में चार बार (0000, 0600, 1200 और 1800 युटीसी) चलाया जाता है ताकि 10 दिनों तक की छोटी से मध्यम अवधि में नियतात्मक पूर्वान्मान दिया जा सके। पूर्वान्मान मॉडल का क्षैतिज में लगभग 12 किमी का रिज़ॉल्यूशन है और ऊर्ध्वाधर में 64 स्तर हैं। इस GFS मॉडल के लिए प्रारंभिक स्थितियाँ ग्रिड पॉइंट स्टैटिस्टिकल इंटरपोलेशन (GSI)-आधारित हाइब्रिड ग्लोबल डेटा एसिमिलेशन सिस्टम (GDAS) रन पर चार-आयामी (4D) एन्सेम्बल-वैरिएशनल डेटा एसिमिलेशन (DA) सिस्टम (4DEnsVar) बिल्डिंग से उत्पन्न होती हैं। नेशनल सेंटर फॉर मीडियम रेंज वेदर फोरकास्टिंग (एनसीएमआरडब्ल्यूएफ) में हाई परफॉर्मेंस कंप्यूटिंग सिस्टम (एचपीसीएस) पर। वास्तविक समय GFS T1534L64 मॉडल आउटपुट IMD पर प्रतिदिन उत्पन्न होते हैं। इस 4DEnsVar डेटा एसिमिलेशन सिस्टम में विभिन्न ध्रुवीय परिक्रमा और भूस्थैतिक उपग्रहों की चमक सहित विभिन्न पारंपरिक और साथ ही उपग्रह अवलोकनों को आत्मसात करने की क्षमता है। वास्तविक समय के आउटपुट आईएमडी की राष्ट्रीय वेब साइट के माध्यम से परिचालन मौसम पूर्वानुमानकर्ताओं और विभिन्न उपयोगकर्ताओं को उपलब्ध कराए जाते हैं। चित्र 1 दिक्षण पश्चिम मानसून 2022 के दौरान 22 अगस्त, 2022 के पूर्वानुमान और भारी वर्षा की घटना को दर्शाता है।

जीईएफएस मॉडल

ग्लोबल एन्सेम्बल फोरकास्ट सिस्टम (जीईएफएस) जीईएफएस आईएमडी में एक परिचालन मौसम मॉडल है


चित्र1. (ए) आईएमडी ने 22 अगस्त, 2022 के लिए वर्षा देखी और आईएमडी-जीएफएस ने (बी) 24 घंटे, (सी) 48 घंटे के लिए पूर्वानुमान लगाया।
(डी) 72 घंटे, (ई) 96 घंटे और (एफ) 120 घंटे 22 अगस्त, 2022 के लिए वैध

जो इनप्ट डेटा में अंतर्निहित अनिश्चितताओं जैसे सीमित कवरेज, उपकरणों या सिस्टम पूर्वाग्रहों और मॉडल की सीमाओं को संबोधित करता है। जीईएफएस कई पूर्वान्मान उत्पन्न करके इन अनिश्चितताओं को मापता है, जो बदले में मॉडल में शामिल होने के बाद डेटा पर लागू अंतर या गड़बड़ी के आधार पर संभावित परिणामों की एक श्रृंखला उत्पन्न करता है। IMD में ग्लोबल एन्सेम्बल फोरकास्ट सिस्टम (GEFS) NCEP से अपनाया गया है और यह ~12 किमी (T1534) रिज़ॉल्युशन में चलता है। 21 एन्सेम्बल की क्ल संख्या (20 परेशान पूर्वान्मान + 1 नियंत्रण पूर्वान्मान) एन्सेम्बल प्रणाली का गठन करती है। ये 20-एसेम्बल सदस्य सभी 64 मॉडल ऊर्ध्वाधर स्तरों पर दिन में चार बार (00, 06, 12 और 18 यूटीसी) पिछले चक्रों के पूर्वानुमान गड़बड़ी से एन्सेम्बल कलमैन फ़िल्टर (एनकेएफ) विधि द्वारा उत्पन्न होते हैं। इन विश्लेषण गड़बड़ी को स्इट के हिस्से के रूप में हाइब्रिड चार-आयामी एन्सेम्बल वैरिएबल डेटा एसिमिलेशन सिस्टम (GDASHybrid4DEnsVar) से प्राप्त प्न: कॉन्फ़िगर किए गए विश्लेषण में जोड़ा गया है। GEFS का 243 घंटे का पूर्वान्मान नियमित रूप से 0000UTC और 1200 UTC प्रारंभिक स्थितियों के आधार पर तैयार किया जाता है, जिसमें GDAS आत्मसात से श्रू होने वाला एक नियंत्रण पूर्वान्मान

और प्रत्येक परेशान प्रारंभिक स्थिति के साथ 20 (20 गड़बड़ी) समूह के सदस्य शामिल होते हैं (देशपांडे एट अल।, 2020)।

डब्ल्यूआरएफ मॉडल

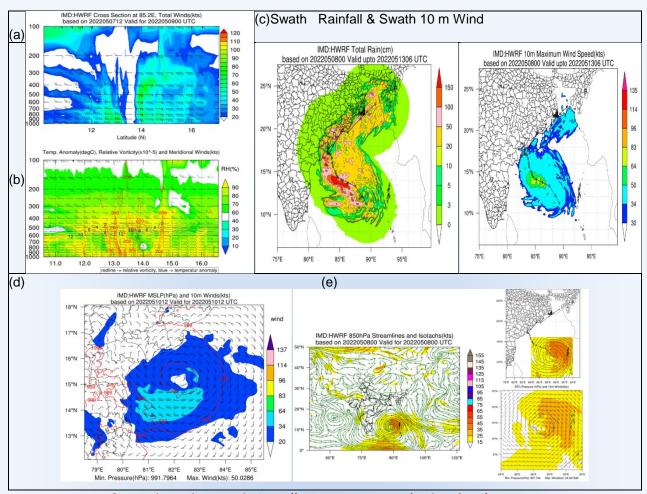
दक्षिण-पश्चिम मानसून सीजन 2022 के दौरान, डब्ल्यूआरएफ मॉडल (एआरडब्ल्यू) ने प्रति घंटे के अंतराल के साथ 0000, 0600, 1200 और 1800 यूटीसी पर प्रतिदिन चार बार 3 किमी क्षैतिज रिज़ॉल्यूशन पर तीन दिनों का पूर्वान्मान दिया। डेटा आत्मसात घटक, क्षेत्रीय जीएसआई (ग्लोबल स्टैटिस्टिकल इंटरपोलेशन) वैश्विक जीएफएस विश्लेषण और अन्य सभी पारंपरिक ग्णवता-नियंत्रित टिप्पणियों को अपने इनप्ट के रूप में लेता है और 3 किमी रिज़ॉल्यूशन पर मेसोस्केल विश्लेषण उत्पन्न करता है। मॉडल ने उत्तर-दक्षिण में क्रमशः 5° दक्षिण से 41° उत्तर और पूर्व-पश्चिम दिशाओं में 49° पूर्व से 102° पूर्व तक फैले डोमेन पर पूर्वान्मान तैयार किया। चित्र 2 विभिन्न वर्षा सीमाओं के लिए कौशल स्कोर (ए) महत्वपूर्ण सफलता सूचकांक और (बी) गिल्बर्ट कौशल स्कोर को दर्शाता है जबिक निचली पंक्ति (सी) 24 घंटे, (डी) 48 घंटे और (ई) 72 घंटे के लिए मौसमी औसत स्थानिक सहसंबंध ग्णांक प्रदर्शित करती है। अवलोकन के साथ वर्षा का पूर्वान्मान।

चित्र2. (ए) महत्वपूर्ण सफलता सूचकांक, (बी) गिल्बर्ट कौशल स्कोर और स्थानिक सहसंबंध गुणांक (सी) 24 घंटे के पूर्वानुमान, (डी) 48 घंटे के पूर्वानुमान और (ई) 72 घंटे की बारिश के पूर्वानुमान के लिए पूरे मानसून सीजन का औसत

HWRF-महासागर (HYCOM/POM-TC) युग्मित मॉडल

2022 के प्री-मॉनस्न और पोस्ट-मॉनस्न चक्रवात सीज़न के दौरान, 18 किमी, 6 किमी और 2 किमी के क्षैतिज रिज़ॉल्यूशन वाले मूवेबल ट्रिपल नेस्टेड एचडब्ल्यूआरएफ-ओशन (एचडब्ल्यूआरएफ/पीओएम-टीसी) युग्मित मॉडल ने दिन में चार बार पांच दिनों का पूर्वानुमान दिया। उत्तरी हिंद महासागर (एनआईओ) पर बनने वाले उष्णकटिबंधीय चक्रवातों के लिए 0000 यूटीसी, 0600 यूटीसी, 1200 यूटीसी और 1800 यूटीसी। एचडब्ल्यूआरएफ का डेटा एसिमिलेशन घटक, क्षेत्रीय जीएसआई डेटा एसिमिलेशन, मध्यवर्ती और अंतरतम घोंसले के लिए मेसोस्केल विश्लेषण उत्पन्न करता है जिसे फिर सभी

तीन डोमेन के लिए विश्लेषण उत्पन्न करने के लिए विलय कर दिया जाता है। मॉडल मूल डोमेन (18 किमी क्षैतिज रिज़ॉल्यूशन) स्थिर रहा जबिक मध्यवर्ती डोमेन (6 किमी क्षैतिज रिज़ॉल्यूशन) और सबसे आंतरिक डोमेन (2 किमी क्षैतिज रिज़ॉल्यूशन) तूफान केंद्र को ट्रैक करने के लिए चले गए। 2022 के दौरान गठित एससीएस एएसएनआई के लिए सत्यापन (त्रुटि) स्कोर तालिका 1 में प्रस्तुत किया गया है। चित्र 3 मई 2022 के दौरान गंभीर चक्रवाती तूफान (एससीएस) एएसएनआई के लिए परिचालन एचडब्ल्यूआरएफ-एचवाईसीओएम युग्मित मॉडल से उत्पन्न विभिन्न उत्पाद का प्रतिनिधित्व करता है।


तालिका 1 चक्रवात ASANI के लिए युग्मित HWRF-HYCOM ट्रैक और तीव्रता पूर्वानुमान त्रुटि सांख्यिकी (*सत्यापित पूर्वानुमानों की संख्या कोष्ठकों में दी गई है)

Lead Time Errors	12 Hr (18)	24 Hr (16)	36 Hr (14)	48 Hr (12)	60 Hr (10)	72 Hr (8)	84 Hr (6)	96 Hr (4)	108 Hr (2)
Direct Position Errors (DPE) (km)	86	109	125	142	163	149	165	243	247
Along Track Errors (AT) (km)	53	66	96	106	133	81	116	146	87
Cross track Errors (CT) (km)	113	129	125	112	108	103	165	143	268
Landfall Point Errors (km)	0	110	110	110	112	180		55	741
Landfall Time Errors (hr)	0	-12	-18	-18	-18	-6		+18	+12
Average Absolute Intensity Errors (AAE) (kts)	7.6	7.8	8.3	10.4	9.5	9.5	5.8	4.0	3.5
Root Mean Square Intensity Errors (RMSE) (kts)	10.1	9.6	10.8	12.5	12.9	10.9	6.5	5.4	3.8

^{(*}Number of forecasts verified is given in the parentheses)

तालिका 2 औसत ट्रैक पूर्वानुमान त्रुटियां [प्रत्यक्ष स्थिति त्रुटि (डीपीई)] किमी में (सत्यापित पूर्वानुमानों की संख्या कोष्ठक में दी गई है)

	12h	24h	36h	48h	60h	72h	84h	96h
Mean MME for 2022	67(19)	75(18)	115(15)	144(12)	203(9)	285(6)	349(3)	395(1)
MME(ASANI)	61.5(8)	98.5(7)	167.9(6)	259.7(5)	357.3(4)	443.1(3)	452.5(2)	395.4(1)
MME (SITRANG)	66.7(5)	57.0(5)	104.6(4)	99.7(3)	143.4(2)	233.6(1)	-	-
MME (MANDOUS)	73.1(6)	62.5(6)	59.7(5)	31.6(4)	37.8(3)	72.6(2)	142.4(1)	-

चित्र 3(ए-ई). एससीएस आसनी जोनल क्रॉस-सेक्शन (ए) कुल हवा और (बी) आर्द्रता और तापमान, (सी) वर्षा की मात्रा और 10 मीटर हवा, (डी) 10 मीटर हवा और 2 किमी कोर डोमेन का एमएसएलपी और (ई) संयुक्त डोमेन की स्ट्रीमलाइन और आइसोटैच (18x6x2 किमी)

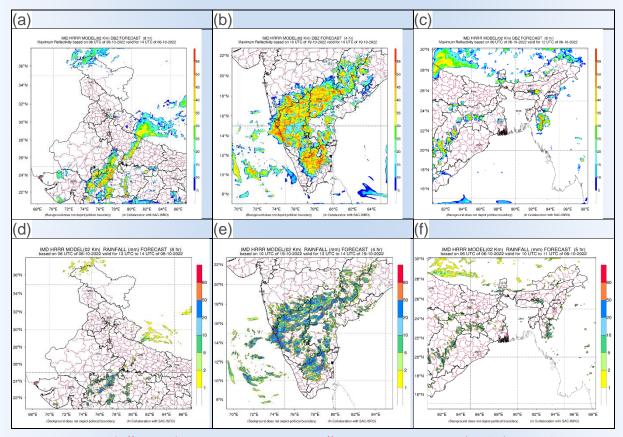
तालिका 3 एससीआईपी मॉडल के नॉट्स में औसत निरपेक्ष त्रुटियां (एएई) और रूट मीन स्क्वायर (आरएमएसई) त्रुटियां (सत्यापित पूर्वानुमानों की संख्या कोष्ठक में दी गई है)

Lead time →	12H	24H	36H	48H	60H	72H	84H	96H
IMD-SCIP (AAE)	5.5 (19)	4.6 (16)	3.8 (13)	3.7(10)	3.3(7)	6.3(4)	10.0(2)	12.0(1)
IMD-SCIP (RMSE)	7.0	5.5	4.1	4.7	3.7	6.9	10.8	12.0

वर्ष 2022 के दौरान उत्तरी हिंद महासागर पर उष्णकटिबंधीय चक्रवातों के पूर्वानुमान के लिए एमएमई और एससीआईपी का प्रदर्शन

(ए) एमएमई - 2022 की औसत ट्रैक पूर्वानुमान त्रुटि (किमी)

वर्ष 2022 के दौरान मल्टी-मॉडल एन्सेम्बल (एमएमई) की वार्षिक औसत ट्रैक पूर्वानुमान त्रुटियां [प्रत्यक्ष स्थिति त्रुटि (डीपीई)] तालिका 2 में दिखाई गई हैं। वार्षिक औसत की गणना


तीन चक्रवाती तूफानों आसनी, सिट्रांग और मैंडोस के लिए की जाती है। 2022 में उत्तर हिंद महासागर (एनआईओ)। पूर्वानुमानित घंटों 24 घंटे, 48 घंटे, 72 घंटे और 96 घंटे के लिए एमएमई के लिए ट्रैक पूर्वानुमान त्रुटियां क्रमशः 75 किमी, 144 किमी, 285 किमी और 395 किमी थीं।

(बी) एससीआईपी - 2022 की औसत तीव्रता पूर्वानुमान त्रुटि (केटी)

एससीआईपी मॉडल की वार्षिक औसत तीव्रता पूर्वानुमान त्रुटियों को तालिका 3 में दिखाया गया है। तीनों चक्रवाती तूफानों के लिए पूर्ण औसत त्रुटि (एएई) 24 घंटों में 4.6 किलोमीटर, 48 घंटों में 3.7 किलोमीटर, 72 घंटों में 6.3 किलोमीटर और 96 घंटों में 12.0 किलोमीटर थी। वर्ष 2022 के दौरान एनआईओ पर (एएसएनआई, सिट्रांग और मैंडौस)। रूट मीन स्क्वायर (आरएमएसई) त्रुटियां 24 घंटों में 5.5 किलोमीटर, 48 घंटों में 4.7 किलोमीटर, 72 घंटों में 6.9 किलोमीटर और 96 घंटों में 12.0 किलोमीटर थीं।

हाई रेजोल्युशन रैपिड रिफ्रेश (एचआरआरआर) मॉडल

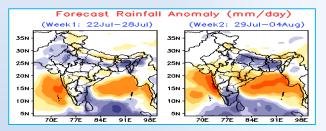
एचआरआरआर मॉडल मौसम अनुसंधान और पूर्वानुमान (डब्ल्यूआरएफ) मॉडल के एआरडब्ल्यू कोर पर आधारित है और आईएमडी-जीएफएस वैश्विक मॉडल से प्रारंभिक और सीमा स्थिति लेता है। WRF डेटा एसिमिलेशन सिस्टम (WRF- DA) का उपयोग करते हुए, RADAR डेटा को 1 घंटे की अविध में हर 10-15 मिनट में HRRR मॉडल में समाहित किया जाता है। एचआरआरआर प्रति घंटा अद्यतन, क्लाउड-रिज़ॉल्यूशन, संवहन-अनुमित देने वाला वायुमंडलीय मॉडल है, जो 2 किमी के क्षैतिज रिज़ॉल्यूशन के साथ है और अगले 12 घंटों के लिए परावर्तन और वर्षा का पूर्वानुमान प्रदान करता है। एचआरआरआर मॉडल भारत की संपूर्ण मुख्य भूमि को कवर करने वाले तीन डोमेन के लिए हर घंटे चक्रीय मोड में चलाया जाता है। उत्तर-पिश्चम डोमेन, पूर्व और उत्तर-पूर्व डोमेन और दिक्षण प्रायद्वीपीय भारत डोमेन और पूर्वानुमान उत्पाद हर दो घंटे के बाद एनडब्ल्यूपी वेबसाइट पर अपडेट किए जाते हैं। एचआरआरआर मॉडल से पूर्वानुमानित उत्पाद चित्र 4 में दिखाया गया है।

चित्र 4(ए-एफ). बाएं कॉलम के आंकड़े (ए, बी, सी) एचआरआरआर मॉडल से उत्तर पश्चिम, दक्षिण और पूर्व और उत्तर-पूर्व भारत के लिए परावर्तन पूर्वानुमान उत्पाद दिखाते हैं। सही कॉलम आंकड़े (डी, ई, एफ) एचआरआरआर मॉडल से उत्तर पश्चिम, दक्षिण और पूर्व और उत्तर-पूर्व भारत के लिए वर्षा पूर्वानुमान उत्पाद को दर्शाते हैं

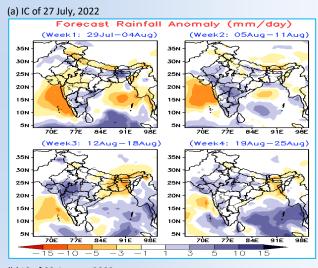
विस्तारित रंज पूर्वानुमान

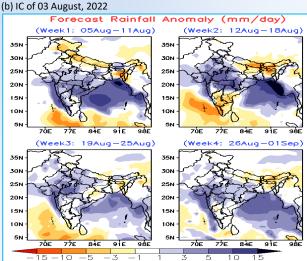
विभिन्न उपयोगकर्ताओं के लिए परिचालन विस्तारित रेंज पूर्वानुमान उत्पाद तैयार करने के लिए 2017 में आईएमडी में सीएफएसवी2 युग्मित मॉडल के मॉडलों के एक सूट के साथ एक युग्मित मॉडल विकसित, कार्यान्वित और संचालित किया गया है। मॉडलों का यह सुइट है (i) T382 पर CFSv2 (≈ 38 किमी) (ii) T126 पर CFSv2 (≈100 किमी) (iii) T382 पर GFSbc (CFSv2 से पूर्वाग्रह संशोधित SST) और (iv) T126 पर GFSbc उपरोक्त सुइट का मल्टी-मॉडल एसेम्बल (एमएमई) प्रत्येक बुधवार की प्रारंभिक स्थिति के आधार पर 32 दिनों के लिए परिचालन रूप से चलाया जाता है, जिसमें 4 एन्सेम्बल सदस्य

2-8 दिनों (सप्ताह 1; श्क्रवार से ग्रुवार), दिनों 09- के लिए 4 सप्ताह का पूर्वान्मान देते हैं। 15 (सप्ताह 2; श्क्रवार से ग्रुवार), दिन 16-22 (सप्ताह 3; श्क्रवार से ग्रुवार) और दिन 23-29 (सप्ताह 4; श्क्रवार से ग्रुवार)। मौजूदा एचपीसीएस आदित्य के साथ तकनीकी समस्या के कारण, परिचालन ईआरएफ प्रणाली को जून 2022 में प्रत्यूष एचपीसीएस प्रणाली में स्थानांतरित कर दिया गया था। यह देखने के लिए कि ईआरएफ में 29 ज्लाई से 04 की अवधि के दौरान मानसून के कमजोर चरण में इस ब्रेक और सक्रिय चरण की भविष्यवाणी कैसे की जाती है। अगस्त और 05-25 अगस्त, 2022 की अवधि के दौरान सक्रिय चरण को चित्र 5 में दिखाया गया है। 29 जुलाई से 04 अगस्त की अवधि के दौरान मानसून के कमजोर चरण को 20 तारीख की प्रारंभिक स्थिति के आधार पर चित्र 6 में बह्त स्पष्ट रूप से देखा गया है। जुलाई, 2022. 27 जुलाई और 03 अगस्त की प्रारंभिक स्थितियों के आधार पर पूर्वान्मानित साप्ताहिक वर्षा विसंगतियों को चित्र 7 में भी दिखाया गया है। इस प्रकार, मॉडल 05-25 अगस्त की अवधि के लिए मानसून के इन सक्रिय चरणों को पकड़ सकता है। छोटे स्थानिक पैमानों (सजातीय क्षेत्रों और मिले उपखंड स्तरों) पर पूर्वान्मान दो सप्ताह तक उपयोगी कौशल दिखाता है। मौसम उपविभाग स्तर पर दो सप्ताह तक के श्रेणी पूर्वानुमानों का उपयोग कृषि-सलाहकार उददेश्य के लिए किया जा रहा है।


चित्र 5. मानसून सीजन 2022 के दौरान दैनिक रूप से देखी गई वर्षा प्रस्थान

भारत के 36 मौसम उपविभागों के लिए कृषि मौसम अनुप्रयोगों का पूर्वानुमान दो सप्ताह के लिए तैयार किया जाता है, जिसमें उपविभाजनों को सप्ताह के दौरान होने वाली वर्षा के आधार पर सामान्य से नीचे, सामान्य या सामान्य से ऊपर की श्रेणी में वर्गीकृत किया जाता है। कृषि क्षेत्र में किसानों की सलाह के लिए मौसम-उपखंड स्तर पर दो सप्ताह के पूर्वानुमान का व्यापक रूप से उपयोग किया जाता है। सामान्य से ऊपर से सामान्य से नीचे की ओर मानसून के संक्रमण को विस्तारित रेंज पूर्वानुमान में अच्छी तरह से कैद किया गया है, जिसका उपयोग कृषि मौसम सलाहकार उद्देश्य के लिए व्यापक रूप से किया जा रहा है।


जिला स्तर पर विस्तारित सीमा का पूर्वानुमान


प्रायोगिक ईआरएफ उत्पाद अन्य क्षेत्रों में भी आवेदन के लिए तैयार किए जा रहे हैं:-

 कृषि और पशु चिकित्सा क्षेत्र (सर्दियों में पाला पड़ने और अत्यधिक कम तापमान का पूर्वानुमान)। फसल सलाह

चित्र 6. 20 जुलाई, 2022 की प्रारंभिक स्थिति के आधार पर 2 सप्ताह के लिए ईआरएफ वर्षा विसंगतियाँ

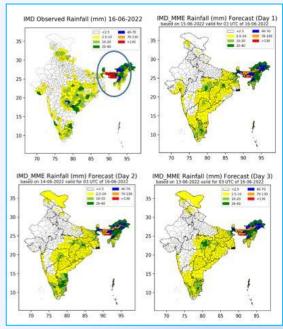
चित्र 7. 20 जुलाई, 2022 की प्रारंभिक स्थिति के आधार पर 4 सप्ताह के लिए ईआरएफ वर्षा विसंगतियाँ

के लिए उपयोग किया जाएगा; पोल्ट्री फर्म जैसे पशु चिकित्सा क्षेत्र के लिए उच्च तापमान का उपयोग किया जाएगा)।

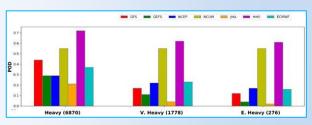
- जल क्षेत्र/आपदा प्रबंधन (मानसून के सक्रिय और विराम चरणों, भारी वर्षा, चक्रवात जैसे गंभीर मौसम आदि का ईआरएफ पूर्वानुमान हाइड्रोलॉजिकल मॉडल और जलाशयों के संचालन में आवेदन के लिए तैयार किया जाएगा)।
- स्वास्थ्य क्षेत्र (स्वास्थ्य क्षेत्र में सेवाओं के लिए हीट इंडेक्स, वेक्टर जनित रोगों के लिए ट्रांसिमशन विंडो, शीत लहर आदि जैसे सूचकांक तैयार किए जाएंगे)।
- ऊर्जा क्षेत्र (बिजली/ऊर्जा क्षेत्र में संभावित उपयोग के लिए अत्यधिक उच्च और निम्न तापमान पूर्वानुमान उत्पाद तैयार किए जा रहे हैं)।

भारतीय शहरों, जिलों और मौसम संबंधी उप-विभाजनों के लिए मल्टीमॉडल एन्सेम्बल (एमएमई) के सृजन का पूर्वानुमान

आईएमडी निर्णय समर्थन के लिए वास्तविक समय में पांच मॉडलों और इसके एमएमई से स्थान आधारित और साथ ही क्षेत्र औसत पूर्वानुमान उत्पन्न करता है। आईएमडी के पास उपलब्ध एनडब्ल्यूपी मॉडल पूर्वानुमान अलग-अलग स्थानिक रिज़ॉल्यूशन (तालिका 4) का है।


तालिका 4 ऑपरेशनल ग्लोबल मॉडल

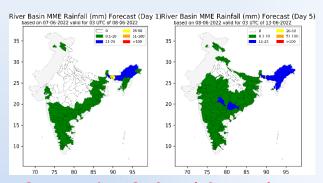
	Operation Models	Agency	Resolution (km)
1.	GFS	IMD	12
2.	GEFS	IMD	12
3.	GFS	NCEP	25
4.	UM	NCMRWF	12
5.	GSM	JMA	25
6.	IFS	ECMWF	20
7.	EPS	NCMRWF	12


भारतीय शहरों के लिए वर्षा, अधिकतम तापमान, न्यूनतम तापमान, हवा की गति, हवा की दिशा, सापेक्ष आर्द्रता (0300 यूटीसी और 1200 यूटीसी पर) और प्रत्येक मॉडल से क्लाउड कवर का सात दिनों का स्थान आधारित पूर्वानुमान तैयार किया जाता है, इसके बाद एमएमई-मीन पूर्वानुमान लगाया जाता है। उत्पन्न किया गया. वर्तमान में 1708 शहरों के लिए पूर्वानुमान उत्पन्न हो रहा है। इसके अतिरिक्त, इन स्टेशनों के लिए उपरोक्त मॉडलों से मेटोग्राम भी तैयार किए जा रहे हैं।

अगले 5 दिनों के लिए भारतीय जिलों के लिए वर्षा, अधिकतम तापमान, न्यूनतम तापमान, हवा की गति, हवा की दिशा, सापेक्ष आर्द्रता (0300 यूटीसी और 1200 यूटीसी पर) और प्रत्येक मॉडल से बादल कवर का क्षेत्र-औसत पूर्वान्मान भी तैयार किया जाता है, इसके बाद एमएमई- मतलब पूर्वान्मान. वर्तमान में, वास्तविक समय में 734 जिलों का पूर्वान्मान तैयार किया जा रहा है। इन स्थानिक डोमेन पर, वर्षा वितरण के पूर्वान्मान की गणना 2.5 मिमी/दिन से अधिक वर्षा की मात्रा की रिपोर्ट करने वाले ग्रिड के प्रतिशत का अनुमान लगाकर भी की जाती है। इसी प्रकार, पूर्वान्मानकर्ताओं के निर्णय समर्थन के रूप में 36 मौसम संबंधी उप प्रभागों के लिए वर्षा वितरण और तीव्रता के पूर्वानुमान तैयार किए जा रहे हैं। इसके अलावा, एमएमई पूर्वानुमान के आधार पर जिलों और मौसम संबंधी उप-मंडलों के लिए भारी वर्षा चेतावनी प्रणाली विकसित की गई है। ये पूर्वान्मान पूर्वान्मान जारी करते समय निर्णय समर्थन के रूप में आरएमसी और एमसी में परिचालन पूर्वान्मानकर्ताओं को प्रसारित किए जाते हैं। ये पूर्वान्मान (डिजिटल मूल्यों के रूप में) और आंकड़े एनडब्ल्यूपी प्रभाग की वेबसाइट पर भी उपलब्ध हैं। विभिन्न एनडब्ल्यूपी मॉडल और एमएमई से जिला वर्षा पूर्वानुमान की तुलना दक्षिण-पश्चिम मानसून 2022 के दौरान आईएमडी अवलोकन के साथ की जाती है। भारतीय जिलों में ग्णात्मक रूप से एमएमई पूर्वान्मान के प्रदर्शन का मूल्यांकन करने के लिए इस रिपोर्ट में एक केस अध्ययन प्रस्तुत किया गया है। एमएमई पूर्वानुमान के प्रदर्शन का आकलन करने के लिए, 16 जून, 2022 के दौरान एक केस अध्ययन चित्र 8 में दिखाया गया है। 16 जून के दौरान भारत के उत्तर-पूर्वी क्षेत्र (उप हिमालयी पश्चिम बंगाल, असम और मेघालय) में अत्यधिक भारी वर्षा देखी गई। एमएमई में 5 वं दिन तक जून, 2022 की अच्छी भविष्यवाणी की गई थी।

भारी वर्षा चेतावनी प्रणाली का आकलन सात मॉडलों से भारी, बहुत भारी और अत्यधिक भारी वर्षा का पता लगाने की संभावना (पीओडी) के संदर्भ में प्रस्तुत किया गया है (चित्र 9)। चित्र 9 से, यह स्पष्ट है कि एमएमई के पास व्यक्तिगत मॉडलों की तुलना में अत्यधिक वर्षा की घटनाओं की भविष्यवाणी करने में अच्छा कौशल है।

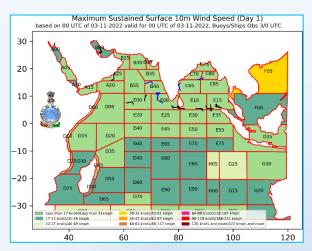
चित्र 8. आईएमडी ने 16 जून, 2022 के लिए दिन 1, दिन 2 और तीसरे दिन बारिश और एमएमई पूर्वानुमान देखा



चित्र 9. भारी, बहुत भारी और अत्यधिक भारी वर्षा श्रेणियों के लिए आईएमडी के अवलोकनों के मुकाबले पहले दिन की वर्षा के पूर्वानुमान का पता लगाने की संभावना। प्रत्येक श्रेणी में घटनाओं की संख्या कोष्ठक में दी गई है

153 नदी उप-बेसिन के लिए एमएमई आधारित परिचालन पूर्वानुमान उत्पाद का विकास

ग्रीष्मकालीन मानसून वर्षा भारत के अधिकांश हिस्सों के लिए प्रमुख जल स्रोत है और लोग अपनी आजीविका के लिए इस जल स्रोत पर निर्भर हैं। इस मौसम के दौरान वर्षा स्थान और समय के अनुसार अत्यधिक परिवर्तनशील होती है। दक्षिण-पश्चिम मानसून अविध के दौरान होने वाली वर्षा भारत की अधिकांश निदयों में प्रवाह निर्वहन का मुख्य स्रोत है।


153 नदी उप-बेसिन के लिए एमएमई पूर्वानुमान उत्पाद पांच दिनों के पूर्वानुमान के लिए विकसित और संचालित किया गया है। प्रत्येक दिन का पूर्वानुमान पांच वैश्विक मॉडलों के सरल एमएमई पर आधारित है जैसा कि उपरोक्त तालिका में दिखाया गया है। प्रत्येक सबबेसिन पर क्षेत्र के औसत मूल्यों की गणना पांच मॉडलों से की जाती है और मॉडलों के औसत को उस दिन के लिए एमएमई के रूप में दर्शाया जाता है। चित्र 10 दिन 1 और दिन 5 के ऑपरेशन पूर्वानुमान के लिए दो नमूना प्लॉट दिखाते हैं। ये पूर्वानुमान (डिजिटल मूल्यों के रूप में) और आंकड़े एनडब्ल्यूपी प्रभाग की वेबसाइट पर भी उपलब्ध हैं।

चित्र 10. 153 नदी उप-बेसिन दिन-1 और दिन-5 का पूर्वानुमान

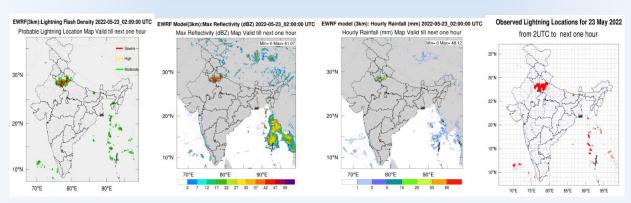
जीएमडीएसएस, समुद्री क्षेत्र, बेड़े और तटीय पूर्वानुमान के लिए एमएमई पर आधारित समुद्री पूर्वानुमान का विकास

सम्द्री उत्पादों के विकास के लिए सतही हवा, दश्यता, मौसम, समुद्री स्थिति की जानकारी की गणना की आवश्यकता थी। हमने पांच वैश्विक परिचालन मॉडल के पूर्वानुमानों (आईएमडी-जीएफएस, जीईएफएस, एनसीयूएम, एनसीईपी-जीएफएस और एनसीयएम) से प्रतिदिन पांच दिनों तक डेटा का उपयोग किया। व्यक्तिगत मॉडल और उनके एमएमई आधारित ग्राफिकल उत्पाद ०००० यूटीसी और 1200 यूटीसी डेटा के आधार पर दिन में दो बार तैयार किए जाते हैं और सम्द्री पूर्वान्मान और ब्लेटिन तैयारियों के लिए आईएमडी वेबसाइट पर अपडेट किए जाते हैं। यह उल्लेख करना उचित है कि देश के मूल हितों के अन्रूप पिछले वर्षों में भारतीय नौसेना की भूमिका और संचालन क्षेत्र में काफी वृद्धि हुई है। इसलिए, देशांतर 30°E-120°E अक्षांश 35°S-40°N को कवर करने वाले अतिरिक्त क्षेत्रों को नौसेना संचालन के लिए महत्वपूर्ण माना जाता है और इन क्षेत्रों में मौसम के बारे में जानकारी संचालन की योजना और स्रक्षित संचालन के लिए महत्वपूर्ण है। उपरोक्त को ध्यान में रखते ह्ए, चित्र 11 में उल्लिखित एक अतिरिक्त क्षेत्र को बेड़े के पूर्वान्मान में शामिल किया गया है। इसके अलावा पहले दिन के पूर्वान्मान के लिए जहाजों और प्लवों का डेटा भी प्रदान किया गया है। चित्र 11 पहले दिन के पूर्वान्मान के लिए प्लवों और जहाजों के अवलोकन सहित विस्तारित बेड़े पूर्वान्मान डोमेन को दर्शाता है।

चित्र 11. पहले दिन के पूर्वानुमान के लिए प्लवों और जहाजों के अवलोकन सहित विस्तारित बेड़े पूर्वानुमान डोमेन

ई-डब्ल्यूआरएफ परिचालन

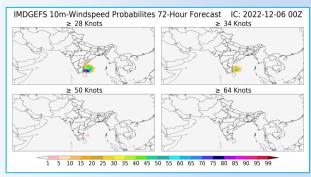
हाल ही में मार्च 2022 के दौरान, IMD NWP डिवीजन ने मॉडल EWRF को परिचालन में लागू किया है। वर्तमान में इलेक्ट्रिक-डब्ल्यूआरएफ मॉडल से तीन अलग-अलग उत्पादों (बिजली फ्लैश घनत्व, अधिकतम परावर्तन और प्रति घंटा वर्षा) को पूर्वानुमानकर्ताओं की प्रतिक्रिया के लिए प्रयोगात्मक आधार पर आईएमडी एनडब्ल्यूपी आंतरिक वेबसाइट में अपडेट किया गया है। ई-डब्ल्यूआरएफ मॉडलिंग प्रणाली में, मॉडल पूर्वानुमान में सुधार के लिए जमीन आधारित बिजली की फ्लैश दर को समाहित किया गया है।


एनडब्ल्यूपी वेबसाइट (https://nwp.imd.gov.in/) पर उपलब्ध इन उत्पादों का विवरण नीचे दर्शाया गया है। वर्तमान में कम्प्यूटेशनल संसाधनों की सीमा के कारण, हम दिन के पूरे 48 घंटों को कवर करने के लिए एक दिन में तीन अलग-अलग समय पर मॉडल चला रहे हैं। प्रत्येक रन नवीनतम लाइटनिंग डेटा एसिमिलेशन का उपयोग करता है जो पूर्वानुमान को प्रभावी ढंग से बेहतर बनाने में मदद करता है।

अर्ली रन 0000 UTC IMD-GFS प्रारंभिक स्थितियों पर आधारित है, जिसमें पूर्वानुमान की वैधता प्रति घंटे के अंतराल पर 24 घंटे (0100 UTC से 0000 UTC अगले दिन) होती है। शुरुआती उत्पाद वेबसाइट पर 0500-0530UTC (10:30 से 11:00 IST) के आसपास उपलब्ध होंगे।

अपडेट रन भी 0000 यूटीसी आईएमडी-जीएफएस प्रारंभिक स्थिति पर आधारित है, जिसमें पूर्वानुमान की वैधता प्रति घंटे के अंतराल पर 18 घंटे (अगले दिन के 0700 यूटीसी से 0000 यूटीसी) के लिए है। अपडेट रन के उत्पाद वेबसाइट पर 0900 यूटीसी (14:30 IST) के आसपास उपलब्ध होंगे।

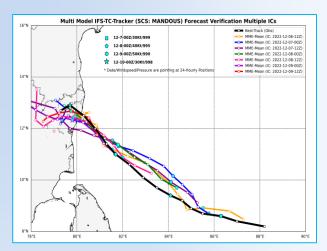
तीसरा रन आईएमडी-जीएफएस 1200 यूटीसी प्रारंभिक स्थिति पर आधारित है, जिसमें पूर्वानुमान की वैधता प्रति घंटे के अंतराल पर 36 घंटे (अगले दिन के 1300 यूटीसी से 2300 यूटीसी) के लिए है। तीसरी बार चलाए जाने वाले उत्पाद वेबसाइट पर 1730 यूटीसी (11:00 से 1200 आईएसटी; मध्यरात्रि) के आसपास उपलब्ध होंगे।


यह इलेक्ट्रिक डब्ल्यूआरएफ मॉडल उचित और स्पष्ट क्लाउड विद्युतीकरण भौतिकी तंत्र पर आधारित है जिसके माध्यम से मॉडल डोमेन के विभिन्न ग्रिड बिंदुओं पर विद्युत क्षेत्र उत्पन्न करता है। इस विद्युतीकरण तंत्र में विभिन्न प्रयोगशाला प्रयोगों के आधार पर अलग-अलग चार्जिंग और डिस्चार्जिंग योजनाएं हैं। चार्जिंग तंत्र में, आगमनात्मक और गैर-प्रेरक प्रक्रियाएं शुरू की गई हैं। पूर्वानुमानकर्ताओं की समझ के लिए उत्पादों के कुछ प्लॉट नीचे दिए गए हैं (चित्र 12)।

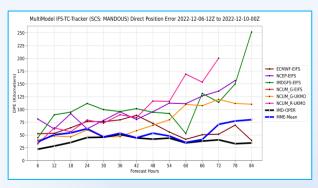
चित्र 12. ईडब्ल्यूआरएफ सिम्युलेटेड (बाएं से दाएं) बिजली फ्लैश उत्पत्ति घनत्व, अधिकतम परावर्तन, वर्षा और 23 मई 2022 को बिजली का अवलोकन किया

हवा की गति की संभावनाएँ

चक्रवाती परिसंचरण की तीव्रता की पहचान करने के लिए हवा की गति प्रमुख मापदंडों में से एक है। IMD-NWP डिवीजन को 4 अलग-अलग सीमाओं से अधिक की सतह (10-मीटर ऊंचाई) हवा की गति की संभावनाओं की निगरानी के लिए विकसित और कार्यान्वित किया गया है, जो IMDGEFS (21 सदस्य) और NEPS (23 सदस्य) मॉडलों का उपयोग करके चक्रवाती परिसंचरण की तीव्रता को समझा सकता है। चार परिचालन पवन गति सीमाएं हैं ≥ 28 समुद्री मील (14.4 मीटर/सेकेंड), ≥ 34 समुद्री मील (17.5 मीटर/सेकेंड), ≥ 50 समुद्री मील (25.7 मीटर/सेकेंड), ≥ 64 सम्द्री मील (32.9 मीटर/सेकेंड) और इसकी संबंधित श्रेणियां क्रमशः डीप डिप्रेशन, चक्रवाती तूफान, गंभीर चक्रवाती तूफान और बह्त गंभीर चक्रवाती तूफान जैसे हैं। यह हवा की गति पूर्वानुमान संभावनाओं की निगरानी चित्र 13 240 घंटे तक हर 6 घंटे के अंतराल पर उत्पादित की जाती है। 6-9 दिसंबर, 2022 के दौरान गंभीर चक्रवाती तूफान (MANDOUS) के दौरान IMDGEFS का उपयोग करके संचालित हवा की गति संभावनाओं के प्लॉट का स्क्रीनशॉट।

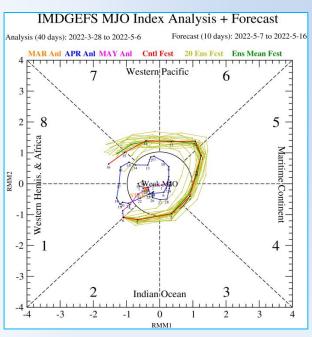

चित्र 13. 2022-12-06 की प्रारंभिक स्थिति के आधार पर IMDGEFS (20 एसेम्बल सदस्य + 1 कंट्रोल रन) का उपयोग करते हुए दहलीज ≥ 28 नॉट, ≥ 34 नॉट, ≥ 50 नॉट, और ≥ 64 नॉट पर 10-मीटर हवा की गति की संभावना -00Z 72 घंटे के पूर्वानुमान के लिए मान्य है (SCS:MANDOUS के दौरान)

मल्टी मॉडल एन्सेम्बल ट्रॉपिकल साइक्लोन ट्रैकर


ईसीएमडब्ल्यूएफ आईएफएस टीसी ट्रैकर : यूरोपियन सेंटर फॉर मीडियम-रेंज वेदर फोरकास्ट्स (ईसीएमडब्ल्यूएफ) ने मध्यम रेंज टाइमस्केल पर वैश्विक संख्यात्मक मौसम भविष्यवाणी के लिए एकीकृत पूर्वानुमान प्रणाली (आईएफएस) मॉडल विकसित किया और उष्णकटिबंधीय चक्रवात ट्रैकर (आईएफएस-टीसी-ट्रैकर) विकसित किया।

ईसीएमडब्ल्यूएफ आईएफएस-टीसी-ट्रैकर स्रोत कोड को आईएमडी के एनडब्ल्यूपी डिवीजन द्वारा मल्टी-मॉडल वैश्विक पूर्वानुमान आउटपुट में फीड करने के लिए संशोधित किया गया है और मल्टी-मॉडल-मीन के साथ व्यक्तिगत मॉडल टीसी-ट्रैकर लाइन प्लॉट और सत्यापन किया गया है। टीसी-ट्रैकर में दृश्य और सांख्यिकीय आउटपुट दोनों पर चर्चा की गई है।

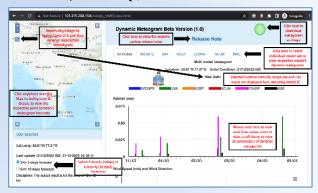
IMDGFS सहित इन 5 वैश्विक मॉडल आउटपुट का उपयोग करके, IFS-TC-ट्रैकर आउटपुट उत्तरी हिंद महासागर में, NWP, IMD पर परिचालनात्मक रूप से बनाए गए हैं। IFS-TC-ट्रैकर चलाने से पहले सभी मॉडल आउटपुट को T159 गॉसियन ग्रिड क्षैतिज रिज़ॉल्यूशन में इंटरपोल किया जा रहा है। केस स्टडी के लिए, 3 चक्रवाती तूफानों को 'SCS: ASANI' (2022-05-07-00Z से 2022-05-11-00Z), 'CS:SITRANG' (2022-10-22-12Z से 2022-) नाम दिया गया है। 10-25-00Z) और 'SCS: 'MANDOUS' (2022-12-06-12Z से 2022-12-09-12Z) बंगाल की खाड़ी (BoB) के ऊपर हुआ, इसका पता लगाया गया है। एससीएस के लिए एमएमई पूर्वानुमान ट्रैक: प्रत्यक्ष स्थिति त्रुटि के साथ मैंडौस क्रमशः चित्र 14 और चित्र 15 में दिखाया गया है।


चित्र 14. ECMWF के IFS-TC-ट्रैकर का उपयोग करके उष्णकिट बंधीय चक्रवात ट्रैकर आउटपुट (2022-12-06-12र से 2022-12-09-12र के दौरान 'MANDOUS' गंभीर चक्रवात तूफान) के वास्तविक समय उत्पादन का नेत्रगोलक सत्यापन। सबसे अच्छा ट्रैक (अवलोकित) मोटी काली रेखा में दिखाया गया है। विभिन्न प्रारंभिक स्थितियों मल्टी मॉडल माध्य को अलग-अलग रंगों में दिखाया गया है। टीसी ट्रैकर आउटपुट 12-घंटे के अंतराल पर प्रदर्शित होते हैं जो अलग-अलग मॉडल-रंगीन रेखाओं पर काले रंग के बिंदुओं और एमएममीन नीले बिंदुओं पर सफेद रंग के खोखले हलकों में चिहिनत होते हैं। देखी गई स्थिति, हवा की गित, एमएसएलपी मान को लीजेंड (चित्र के शीर्ष बाईं ओर) में विभिन्न प्रतीकों के साथ चिहिनत किया गया है, सर्वोत्तम ट्रैक (काली रेखा) के साथ तुलना करने के लिए विभिन्न प्रारंभिक स्थिति मॉडल पूर्वान्मान ट्रैक पर भी चिहिनत किया गया है।

चित्र 15. सांख्यिकीय सत्यापन - मैंडौस की प्रत्यक्ष स्थिति त्रुटि -गंभीर चक्रवाती तुफान

सांख्यिकीय सत्यापन - चक्रवाती तूफान 'MANDOUS' की प्रत्यक्ष स्थिति त्रुटि को 2022-12-06-122 से विभिन्न प्रारंभिक स्थितियों के दौरान, पांच मॉडलों और MMMean के IFS-TC-ट्रैकर आउटपुट के चित्र 15 (सी) में दिखाया गया है। 2022-12-10-002. 54 घंटे तक के लीड टाइम के लिए 5 मॉडल ट्रैक त्रुटियां 125 किमी के भीतर हैं। मल्टी मॉडल मीन ट्रैक त्रुटि लगातार 75 किमी, 84 घंटे के पूर्वान्मानित लीड समय से नीचे है।

मैडेन-जूलियन ऑसिलेशन (एमजेओ) निगरानी और वास्तविक समय सत्यापन



चित्र 16. पिछले 40 दिनों (2022-03-28 से 2022-05-06) के लिए एमजेओ मॉनिटर और 2022-05-06 (एएसएनआई गंभीर चक्रवाती तूफान के दौरान) की प्रारंभिक स्थिति के आधार पर अगले 10 दिनों का पूर्वान्मान

मैडेन-जूलियन ऑसिलेशन (एमजेओ) उष्णकटिबंधीय वातावरण में अंतर-मौसमी (30 से 90 दिन) परिवर्तनशीलता का सबसे बड़ा तत्व है। चित्र 16 2022-05-06-00जेड की प्रारंभिक स्थिति के आधार पर अगले 10 दिनों के पूर्वानुमान के साथ-साथ पिछले 40 दिनों के अवलोकन + विश्लेषण एमजेओ सूचकांक निगरानी को दर्शाता है। एमजेओ पूर्वानुमान समूह (आईएमडीजीईएफएस) सूचकांक चरण 3, 4, 5 और 6 पर हैं, और इसके परिणाम बंगाल की खाड़ी पर अधिक गतिविधि के लिए अपेक्षित हैं, और यह 2022-05 के दौरान एक गंभीर चक्रवाती तूफान (एएसएनआई) के रूप में ह्आ। 07-0000 यूटीसी से 2022-05-11-1200 यूटीसी। इसके अलावा, एनडब्ल्यूपी ने 11 दिनों के अंतराल के साथ अवलोकन (ओएलआर) + आईएमडी जीएफएस विश्लेषण (यू-विंड्स) के साथ एमजेओ इंडेक्स का वास्तविक समय सत्यापन विकसित किया।

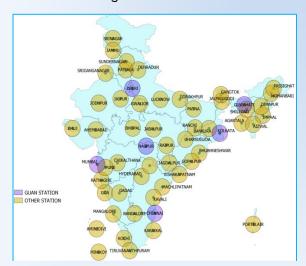
गतिशील मौसम चित्र

एनडब्ल्यूपी डिवीजन को आईएसएसडी डिवीजन के साथ संयुक्त रूप से विकसित किया गया, और परीक्षण मोड पर आईएमडी पूर्वानुमानकर्ताओं के लिए 12-12-2022 को डायनेमिक मेटियोग्राम (प्री-रिलीज़) बीटा संस्करण 1.0 जारी किया गया। http://103.215.208.134/webgis_MME/ index.html डायनामिक मेटियोग्राम वेबपेज का स्क्रीनशॉट चित्र 17 में दिखाया गया है।

चित्र 17. डायनामिक मेटियोग्राम वेबपेज का स्क्रीनशॉट, जहां उपयोगकर्ता महासागर सहित मानचित्र (बाईं ओर) पर कहीं भी क्लिक कर सकता है, और संबंधित मेटियोग्राम गतिशील रूप से उत्पन्न होते हैं और 5 वैश्विक मॉडल और एमएमई और सभी के लिए इंटरैक्टिव मेटियोग्राम (दाईं ओर) के रूप में प्रदर्शित होते हैं। मॉडल एक साथ

एनडब्ल्यूपी डिवीजन से उपलब्ध सभी उत्पादों को वेबपेज पर देखा जा सकता है। https://nwp.imd.gov.in

अध्याय ४

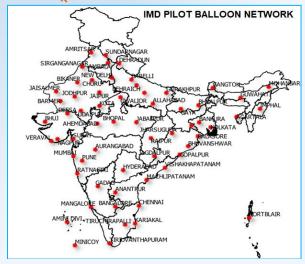

अवलोकन नेटवर्क

आईएमडी के आदेशों में से एक विभिन्न उपयोगकर्ताओं द्वारा उपयोग के लिए मौसम संबंधी अवलोकन लेना है। मौसम पूर्वानुमान के कौशल को बनाए रखने और सुधारने के लिए वायुमंडलीय अवलोकन नेटवर्क को मजबूत करना और इसका नियमित रखरखाव नितांत आवश्यक है। आईएमडी पिछले वर्षों में अपने अवलोकन प्रणाली नेटवर्क को बढा रहा है।

4.1. अपर एयर ऑब्जर्वेशनल नेटवर्क

रेडियोसाउंडिंग रेडियोविंड (आरएस/आरडब्ल्यू) नेटवर्क

WMO के वैश्विक अवलोकन प्रणाली (GOS) नेटवर्क के एक भाग के रूप में, भारत मौसम विज्ञान विभाग (IMD) के ऊपरी वायु नेटवर्क में 43 परिचालन रेडियोसोंडे रेडियोविंड स्टेशन हैं। ये स्टेशन वायुमंडल की ऊर्ध्वाधर प्रोफ़ाइल, जैसे तापमान, दबाव, आर्द्रता, हवा की गित और दिशा को मापने के लिए अवलोकन लेते हैं, ऊपरी हवा का अवलोकन गुब्बारे से उत्पन्न ध्विन का उपयोग करके लिया जाता है। ये स्टेशन दिन में दो बार 0000 यूटीसी और 1200 यूटीसी घंटे पर रेडियोसाउंडिंग अवलोकन लेने में लगे हुए हैं।



चित्र 1. भारत का मौजूदा आरएस/आरडब्ल्यू नेटवर्क मौसम विभाग

ग्लोबल ऑब्जर्विंग सिस्टम (जीओएस) नेटवर्क के एक उपसमुच्चय के रूप में, विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) संयुक्त राष्ट्र शैक्षिक, वैज्ञानिक और सांस्कृतिक संगठन (यूनेस्को), संयुक्त राष्ट्र पर्यावरण कार्यक्रम (यूएनईपी) के अंतर सरकारी महासागरीय आयोग (आईओसी) के सहयोग से और अंतर्राष्ट्रीय विज्ञान परिषद (आईसीएसयू) ने द्वितीय विश्व जलवायु सम्मेलन के परिणामस्वरूप 1992 में ग्लोबल क्लाइमेट ऑब्जविंग सिस्टम (जीसीओएस) नेटवर्क की स्थापना की। जीसीओएस के ऊपरी वायु क्षेत्र में, ऊपरी वायु डेटा गुणवता में और सुधार लाने के उद्देश्य से, आईएमडी ने अपने 6 क्षेत्रीय मौसम विज्ञान केंद्रों (नई दिल्ली, मुंबई, कोलकाता, चेन्नई, गुवाहाटी और नागपुर) में GUAN मानक रेडियोसाउंडिंग अवलोकन स्थापित किए। इन स्टेशनों के प्रदर्शन को उपकरणों और अवलोकन के तरीकों (TECO-2016) पर WMO तकनीकी सम्मेलन में प्रस्तुत किया गया था और इन स्टेशनों को GCOS अपर एयर नेटवर्क (GUAN) में शामिल करने के लिए महासचिव WMO को एक औपचारिक दावा किया गया था (चित्र 1)।

निरंतर प्रदर्शन के आधार पर, इन स्टेशनों को जीसीओएस सचिवालय द्वारा डब्लूएमओ-गुआन मानक नेटवर्क में शामिल किया गया है, और उनके प्रदर्शन संकेतक जून 2017 से नियमित आधार पर एनओएए की मासिक रिपोर्ट के सारांश में शामिल हैं।

पायलट बैलून (पीबी) नेटवर्क

चित्र 2. आईएमडी का अपर एयर पायलट बैलून (पीबी) नेटवर्क

आईएमडी 62 पीबी वेधशालाओं का संचालन कर रहा है, जो 00, 06, 12 और 18 यूटीसी घंटे के अवलोकन पर ऊपरी वायु पवन प्रोफाइल के लिए 2 से 4 अवलोकन ले रहा है। पीबी स्टेशन गुब्बारा ट्रैकिंग के लिए मैन्युअल रूप से ऑप्टिकल थियोडोलाइट्स का उपयोग कर रहे हैं। पारंपरिक ऑप्टिकल थियोडोलाइट आधारित अवलोकनों से जीपीएस आधारित पूर्ण स्वचालित पीबी सिस्टम पर स्विच करने का प्रयास किया गया है। इसके लिए जीपीएस आधारित पायलट-सोंडे विकसित किया गया है और आईएमडी वर्कशॉप में इन-हाउस निर्मित किया जा रहा है। इसे नई दिल्ली, मुंबई और लखनऊ के पीबी स्टेशनों पर पीबी नेटवर्क में लागू किया गया है (चित्र 2)।

वर्ष के दौरान प्रमुख स्थापनाएँ:

- 10 आईएमडी स्टेशनों पर स्वदेशी आरएस/आरडब्ल्यू सिस्टम की स्थापना पूरी हो चुकी है।
- 2. 63 पीबी स्टेशनों में से 05 पायलट बैलून स्टेशनों को स्वचालित जीपीएस पीबी स्टेशनों में अपग्रेड किया गया है और ये पीबी सिस्टम स्वदेशी हैं और आईएमडी दिल्ली में निर्मित/असेंबल किए गए हैं।
- 20 पीबी स्टेशनों में से 18 पीबी स्टेशनों पर स्वदेशी जीपीएस पीबी सिस्टम की स्थापना पूरी हो चुकी है।

4.2. भूतल अवलोकन नेटवर्क

स्वचालित मौसम स्टेशन सभी महत्वपूर्ण सतही मौसम अवलोकनों को मापते हैं। ये मौसम स्टेशन सटीक और लगातार रीडिंग प्रदान करते हैं, इनमें बिजली की कम आवश्यकता होती है, और व्यावहारिक रूप से कहीं भी काम कर सकते हैं। मौसम निगरानी प्रणाली मौसम की स्थिति पर स्थानीय जानकारी प्रदान करने में सक्षम है। ये गंभीर मौसम की स्थिति के दौरान बहुत उपयोगी होते हैं और वर्तमान मौसम डेटा सभी को वास्तविक समय में यहां तक कि 1 मिनट के अंतराल पर भी उपलब्ध कराया जाता है।

AAWS/ARG/AWS को स्वचालित मौसम अवलोकन और डेटा संग्रह और प्रसारण के लिए इलेक्ट्रॉनिक उपकरणों या कंप्यूटर द्वारा नियंत्रित किया जा सकता है। मोबाइल टेलीमेट्री के उपयोग से, डेटा अधिग्रहण प्रणाली को एसएमएस या एफ़टीपी सर्वर के माध्यम से दूर से नियंत्रित किया जा सकता है। AWS/ARG को

दूरस्थ स्थान पर स्थापित किया जा सकता है और वास्तविक समय में उपग्रह संचार के माध्यम से डेटा प्रसारित किया जा सकता है।

एग्रो स्वचालित मौसम स्टेशन (AAWS)

भारत मौसम विज्ञान विभाग (आईएमडी) ने भारतीय कृषि अनुसंधान परिषद (आईसीएआर) नेटवर्क के तहत कृषि विज्ञान केंद्रों (केवीके) में स्थित जिला एग्रोमेट इकाइयों (डीएएमय्) में एग्रो-एडब्ल्यूएस की स्थापना का कार्य किया है।

2021-2022 के दौरान पूरे भारत में DAMU (कृषि विज्ञान केंद्र) में 200 एग्रो-एडब्ल्यूएस स्थापित किए गए।

कृषि स्वचालित मौसम स्टेशन एक मौसम संबंधी निगरानी उपकरण है जो विभिन्न सेंसरों के साथ डेटा अधिग्रहण प्रणाली से बना है, जिसका उपयोग कृषि के क्षेत्र में किया जाता है। इसमें 10 मीटर झ्काव योग्य मस्तूल शामिल है और इसमें सेंसर शामिल हैं - तापमान और आर्द्रता सेंसर, वर्षा सेंसर अल्ट्रासोनिक पवन सेंसर दो ऊंचाई 3 मीटर और 10 मीटर ऊंचाई पर, मिटटी सेंसर चार गहराई पर - 10 सेमी, 30 सेमी, 70 सेमी और 100 सेमी, ध्रुप अवधि सेंसर। पवन सेंसरों को दो ऊंचाइयों पर रखा जाता है - एक पवन सेंसर कृषि प्रयोजन के लिए और दूसरा सेंसर पूर्वान्मान प्रयोजन के लिए। मोबाइल टेलीमेट्री (जीपीआरएस संचार) के माध्यम से 15 मिनट के अंतराल पर आईएमडी सर्वर पर एफ़टीपी और ईमेल के माध्यम से डेटा ट्रांसिमशन। एग्रो एडब्ल्यूएस को बिजली की आपूर्ति 12 वी, 65 एएच एसएमएफ बैटरी है और 40 डब्ल्यू सौर पैनल द्वारा चार्ज की जाती है।

एग्रो एडब्ल्यूएस साइट

स्वचालित मौसम स्टेशन (AWS)

आईएमडी का संवर्द्धन AWS के साथ सतह अवलोकन नेटवर्क है और पूरे भारत में 806 AWS का स्थापित नेटवर्क है।

400 एडब्ल्यूएस परियोजना के तहत, 2022 में 99 एडब्ल्यूएस स्थापित किए गए हैं (71 एडब्ल्यूएस केरल राज्य में स्थापित हैं, 21 एडब्ल्यूएस पूर्वोत्तर राज्यों में स्थापित हैं और 7 एडब्ल्यूएस आंध्र प्रदेश में स्थापित हैं)। इसमें 10 मीटर टिलटेबल मास्ट और चार संसर के साथ डेटा अधिग्रहण प्रणाली शामिल है। - तापमान और आर्द्रता संसर, वर्षा संसर, 10 मीटर ऊंचाई पर अल्ट्रासोनिक पवन संसर, दबाव संसर। वास्तविक समय में एफ़टीपी द्वारा आईएमडी सर्वर पर 15 मिनट के अंतराल पर मोबाइल टेलीमेट्री (जीपीआरएस संचार) के माध्यम से डेटा ट्रांसिमशन। AWS को बिजली की आपूर्ति 12 V, 65 AH SMF बैटरी है और 40 W सौर पैनल दवारा चार्ज की जाती है।



एडब्ल्यूएस साइट

स्वचालित रेनगेज स्टेशन (एआरजी)

आईएमडी ने शहरी क्षेत्रों में एआरजी के साथ वर्षा अवलोकन नेटवर्क का विस्तार किया है और पूरे भारत में 1382 एआरजी का नेटवर्क स्थापित किया है।

आईएमडी ने 2021-2022 में मुंबई, कोलकाता, चेन्नई, पुणे, गुवाहाटी, अगरतला और शिलांग में 52 एआरजी नेटवर्क बढ़ाया है और अन्य शहरों में भी अधिक एआरजी स्थापित करने की योजना बना रहा है।

एआरजी साइट

इसमें 3 मीटर स्थिर मस्तूल और दो सेंसर के साथ डेटा अधिग्रहण प्रणाली शामिल है - तापमान और आर्द्रता सेंसर और वर्षा सेंसर। मोबाइल टेलीमेट्री (जीपीआरएस संचार) के माध्यम से 15 मिनट के अंतराल पर वास्तविक समय में एफ़टीपी द्वारा आईएमडी सर्वर तक डेटा ट्रांसमिशन और उपग्रह संचार के माध्यम से भी। एआरजी को बिजली की आपूर्ति 12 वी, 42 एएच एसएमएफ बैटरी है और 40 डब्ल्यू सौर पैनल द्वारा चार्ज की जाती है।

जीकेएमएस योजना के तहत मौसम अवलोकन को बढ़ाने और कृषि मौसम संबंधी सलाह तैयार करने में उपयोग के लिए एग्रोमेट फील्ड यूनिट (एएमएफय्) पोर्ट ब्लेयर, अंडमान और निकोबार द्वीप समूह में पारंपरिक एग्रोमेट वेधशाला स्थापित की गई है।

पहले चरण में कुल 200 एग्रो-एडब्ल्यूएस की स्थापना को पूरा करने के लिए भारतीय कृषि अनुसंधान परिषद (आईसीएआर) के नेटवर्क के तहत कृषि विज्ञान केंद्रों (केवीके) के परिसर में दिसंबर 2022 तक 10 और स्टेशनों पर एग्रो-एडब्ल्यूएस स्थापित किया गया है। चरण। पारंपरिक मौसम सेंसर के अलावा, ये एग्रो-एडब्ल्यूएस मिट्टी की नमी और मिट्टी के तापमान की निगरानी के लिए अतिरिक्त सेंसर से लैस हैं।

सौर विकिरण उपकरण

भारत मौसम विज्ञान विभाग पूरे भारत में 47 सौर विकिरण स्टेशनों (एसआरएस) के नेटवर्क का मालिक है और उसका संचालन करता है।

आईएमडी ने एमओ अगरतला में नया सौर विकिरण स्टेशन शुरू किया।

पिरजियोमीटर (प्रिसिजन इन्फ्रारेड) (स्थलीय विकिरण मापें)

थर्मोइलेक्ट्रिक पायरानोमीटर (वैश्विक सौर विकिरण मापें)

शेडिंग रिंग के साथ थर्मोइलेक्ट्रिक पायरानोमीटर (विस्तारित सौर विकिरण को मापें)

सनशाइन रिकॉर्डर

पायरेडियोमीटर

यूवी-रेडियोमीटर (यूवी-ए और यूवी-बी विकिरण)

मापने के लिए एचएफ कैविटी रेडियोमीटर और पीएमओ6 सुविधा (एक संदर्भ उपकरण) प्रत्यक्ष सौर विकिरण. सेंट्रल रेडिएशन लैब पुणे में सौर विकिरण उपकरणों के लिए एक अंशांकन सुविधा। आईएमडी ने 2022 के दौरान 125 सौर विकिरण सेंसर का अंशांकन किया है

वर्ष 2022 में नई स्थापनाएँ

DCWIS को शिरडी, जयपुर, शमशाबाद (RWY 27L), बाजपे (RWY 24), जमशेदपुर, उदयपुर, पंतनगर, मोपा (गोवा), कडप्पा, जलगांव, कोल्हापुर, खुशीनगर, मदुरै, राउरकेला में स्थापित किया गया था।

DIWE को INS गरुड़ (कोच्चि), राउरकेला, INS शिकरा (मुंबई), तिरूपति में स्थापित किया गया था।

DCWIS के साथ एकीकृत वर्तमान मौसम डिटेक्टर (PWD) चेन्नई - 02 नंबर, शमशाबाद (RWY 27 M), जयपुर, अमृतसर, पालम, इंदौर, चेन्नई, कोच्चि, रांची, कोलकाता (RWY 06), अमृतसर, अहमदाबाद, BIAL में स्थापित किया गया था। बैंगलोर (पीडब्ल्यूडी - 04 संख्या, डीसीडब्ल्यूआईएस - 02 संख्या)

लखनऊ में पी.डब्ल्यू.डी

पीडब्लूडी, बायल, बेंगल्रु

श्रीनगर में हाई विंड स्पीड रिकॉर्डर और सरफेस ओजोन उपकरण स्थापित किए गए।

श्रीनगर में उच्च पवन गति रिकॉर्डर और सतह ओजोन उपकरण

श्री अमरनाथ यात्रा मार्ग के दौरान AWS स्थापना

4.3. वायुमंडलीय विज्ञान

पर्यावरण निगरानी एवं अनुसंधान केंद्र (ईएमआरसी)

पर्यावरण मौसम विज्ञान सेवाएँ

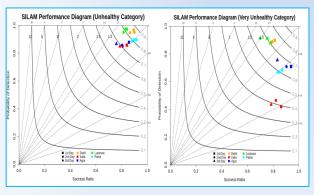
आईएमडी वायुमंडलीय घटकों से संबंधित निगरानी और अनुसंधान करता है जो पृथ्वी की जलवायु में परिवर्तन को मजबूर करने में सक्षम हैं, और वैश्विक ओजोन परत की कमी का कारण बन सकते हैं, और स्थानीय से वैश्विक स्तर तक वायु गुणवता में महत्वपूर्ण भूमिका निभाते हैं। आईएमडी वायु प्रदूषण प्रभावों के आकलन में पर्यावरण और वन एवं जलवायु परिवर्तन मंत्रालय और अन्य सरकारी एजेंसियों को विशिष्ट सेवाएं भी प्रदान करता है। आईएमडी विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) ग्लोबल एटमॉस्फियर वॉच (जीएडब्ल्यू) कार्यक्रम में वायुमंडलीय पर्यावरण के क्षेत्र में योगदान देता है। GAW का मुख्य उद्देश्य वायुमंडल की रासायनिक संरचना और संबंधित भौतिक विशेषताओं और उनके रुझानों पर डेटा और अन्य जानकारी प्रदान करना है, जो वायुमंडल के व्यवहार और महासागरों और जीवमंडल के साथ इसकी बातचीत की समझ में स्धार करने के लिए आवश्यक है।

ओजोन निगरानी नेटवर्क: ईएमआरसी, आईएमडी के राष्ट्रीय ओजोन केंद्र को विश्व मौसम विज्ञान संगठन के क्षेत्रीय संघ॥ (एशिया) के लिए द्वितीयक क्षेत्रीय ओजोन केंद्र के रूप में नामित किया गया है। केंद्र अंटार्किटका में मैत्री और भारती सिहत ओजोन निगरानी स्टेशनों का एक नेटवर्क बनाए रखता है:

- डॉब्सन स्पेक्ट्रोफोटोमीटर का उपयोग करके कुल स्तंभकार ओजोन माप।
- सतही ओजोन निगरानी नेटवर्क।
- ओजोन के ऊर्ध्वाधर वितरण का मापन।
- डॉब्सन स्पेक्ट्रोफोटोमीटर D36 को 2020 में मौसम विज्ञान वेधशाला होहेनपीसेनबर्ग, जर्मनी में क्षेत्रीय डॉब्सन कैलिब्रेशन सेंटर (RDCC) में कैलिब्रेट और नवीनीकृत किया गया था। एक और डॉब्सन स्पेक्ट्रोफोटोमीटर D112 को Irene तकनीकी केंद्र, प्रिटोरिया में आयोजित WMO डॉब्सन स्पेक्ट्रोफोटोमीटर (DIC) की अंतर्राष्ट्रीय तुलना के दौरान कैलिब्रेट किया गया था। गौतेंग प्रांत, दक्षिण अफ्रीका, 7-18 अक्टूबर, 2019। डब्ल्यूएमओ की मदद से कनाडा में दो ब्रूअर स्पेक्ट्रोफोटोमीटर को कैलिब्रेट और नवीनीकृत किया गया है।

वर्षा और पार्टिकुलेट मैटर रसायन विज्ञान की निगरानी : आईएमडी 1970 के दशक से ग्यारह स्टेशनों के नेटवर्क के माध्यम से वर्षा रसायन विज्ञान की निगरानी कर रहा है। इन स्टेशनों से एकत्र किए गए वर्षा जल और कण पदार्थ के नम्नों का आईएमडी, प्णे में वाय् प्रदूषण रसायन विज्ञान प्रयोगशाला में विश्लेषण किया जाता है, जो आयन-क्रोमैटोग्राफ, यूवी-विज़ स्पेक्ट्रोफोटोमीटर, अर्ध-सूक्ष्म संत्लन, पीएच और चालकता मीटर, अल्ट्रा-शुद्ध विआयनीकृत जल शोधन से सुसज्जित है। प्रणाली। प्रयोगशाला में एक नया परमाण् अवशोषण स्पेक्ट्रोफोटोमीटर स्थापित किया गया है। आईएमडी प्रयोगशाला ने वर्ष 2021 और 2022 में आयोजित प्रयोगशाला अंतर त्लना अध्ययन ६४ और ६५ में भाग लिया, जो कि ग्णवत्ता आश्वासन/विज्ञान गतिविधि केंद्र - अमेरिका द्वारा आयोजित किया गया था, जो डब्ल्यूएमओ जीएडब्ल्यू में डेटा ग्णवत्ता स्निश्चित करने और विज्ञान गतिविधियों का समर्थन करने के लिए संचालित पांच क्यूए/एसएसी में से एक है।

एरोसोल मॉनिटरिंग नेटवर्क: आईएमडी ने भारत के विभिन्न भौगोलिक क्षेत्रों को कवर करते हुए एरोसोल मॉनिटरिंग नेटवर्क स्थापित किया है। एरोसोल मॉनिटरिंग नेटवर्क में निम्नलिखित उप-नेटवर्क शामिल हैं:


- (i) सन-स्काई रेडियोमीटर नेटवर्क: पर्यावरण निगरानी और अनुसंधान केंद्र, भारत मौसम विज्ञान विभाग ने बीस स्थानों पर स्काईरेडियोमीटर स्थापित करके एरोसोल मॉनिटरिंग नेटवर्क स्थापित किया है। नेटवर्क का उपयोग एरोसोल के ऑप्टिकल गुणों जैसे एरोसोल ऑप्टिकल गहराई, सिंगल स्कैटरिंग अल्बेडो, आकार वितरण, चरण फंक्शन आदि को मापने के लिए किया जाता है।
- (ii) **ब्लैक कार्बन एरोसोल मॉनिटरिंग नेटवर्क** : स्पेक्ट्रल एरोसोल अवशोषण गुणांक, समतुल्य ब्लैक कार्बन सांद्रता और बायो-मास बर्निंग घटक की माप के लिए 25 स्टेशनों का ब्लैक कार्बन मॉनिटरिंग नेटवर्क चालू है।
- (iii) मल्टी-वेवलेंथ इंटीग्रेटिंग नेफलोमीटर नेटवर्क: आईएमडी ने बारह स्थानों पर एयरोसोल बिखरने के गुणांक की माप के लिए एक नेटवर्क स्थापित किया है जो नई दिल्ली, रानीचौरी, वाराणसी, नागपुर, पुणे, पोर्ट ब्लेयर, विशाखापत्तनम, गुवाहाटी, कोलकाता, जोधपुर, भुज में चालू है।, तिरुवनंतप्रम।
- (iv) **एरोसोल का रासायनिक लक्षण वर्णन**: पीएम10, पीएम2.5 और कुल निलंबित पार्टिकुलेट मैटर एकत्र करने के लिए उच्च मात्रा के नमूने दिल्ली, रानीचौरी, पुणे और वाराणसी में स्थापित किए गए हैं। वायु प्रदूषण अनुभाग, ओ/ओ सीआरएस, आईएमडी, पुणे में एरोसोल के रासायनिक लक्षण वर्णन के लिए फिल्टर पेपर का विश्लेषण किया जा रहा है।

वायु गुणवत्ता पूर्वानुमान और अनुसंधान:

वाय् ग्णवता पूर्वान्मान मॉडल का नवीनतम संस्करण "वाय्मंडलीय संरचना के एकीकृत मॉडलिंग के लिए प्रणाली (SILAM v5.8)" भारतीय क्षेत्र के लिए चालू किया गया है। डोमेन 60-100 °E, 0-40 °N के लिए सभी मानदंड प्रदूषकों (PM10, PM2.5, O3, CO, NO2, SO2 और अन्य प्रजातियों) के 96 घंटों के लिए प्रति घंटा वायु गुणवत्ता पूर्वानुमान उत्पन्न किया जा रहा है। SILAM को प्रति घंटे 3-किमी IMD-WRF मौसम संबंधी पूर्वान्मान मॉडल के साथ जोड़ा गया है। नवीनतम उत्सर्जन सूची CAMS-GLOB v5.3, मोटे और खनिज-सूक्ष्म मानवजनित कण पदार्थ के लिए EDGAR v4.3.2 के साथ पूरक 0.1-डिग्री, आइसोप्रीन और मोनो-टेरपीन के लिए GEIA v1 लाइटनिंग क्लाइमेटोलॉजी और MEGAN-MACC क्लाइमेटोलॉजी का उपयोग SILAM में किया जाता है। नमूना। मॉडल को सीपीसीबी से उपलब्ध वाय् ग्णवता अवलोकनों के साथ मान्य किया गया है। दिल्ली के लिए एक बह्त ही उच्च रिज़ॉल्यूशन वाला शहर पैमाने का वाय् ग्णवता मॉडल "पर्यावरण सूचना फ़्यूज़न सेवा (ENFUSER)" भी चालू किया गया है। 30 मीटर पर डोमेन (28.362 °N-28.86 °N, 76.901 °E-77.56 °E) के लिए सभी मानदंड प्रदूषकों (PM10, PM2.5, O3, CO, NO2, SO2) के 72 घंटों के लिए प्रति घंटा वायु गुणवत्ता पूर्वान्मान उत्पन्न होता है। स्थानिक संकल्प। मॉडल उच्च रिज़ॉल्यूशन पर मॉडलिंग क्षेत्र का वर्णन करने के लिए बड़ी मात्रा में भौगोलिक सूचना प्रणाली (जीआईएस) डेटा का उपयोग और आत्मसात करता है। इसमें सड़क नेटवर्क, भवन, भूमि उपयोग की जानकारी, उच्च-रिज़ॉल्यूशन उपग्रह चित्र, जमीन की ऊंचाई, जनसंख्या डेटा, यातायात घनत्व आदि का विस्तृत विवरण शामिल है। SILAM और ENFUSER को फिनिश मौसम विज्ञान संस्थान के साथ एक सहयोगी परियोजना के तहत विकसित किया गया है। IMD SILAM और WRF-Chem (IITM) मॉडल पर आधारित AQ प्रारंभिक चेतावनी ब्लेटिन जारी करता है।

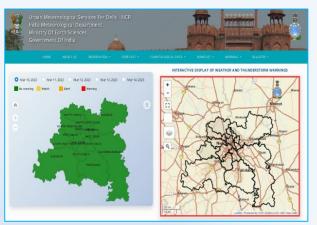
वायु गुणवत्ता मॉडल का प्रदर्शन सत्यापनः

चित्र 1 (ए) अस्वस्थ श्रेणी और (बी) अध्ययन अविध की बहुत अस्वस्थ श्रेणी के लिए सफलता अनुपात, पीओडी, पूर्वाग्रह और सीएसआई कौशल स्कोर को सारांशित करने वाला प्रदर्शन आरेख दिखाता है। लेबल की गई धराशायी रेखाएँ पूर्वाग्रह स्कोर का प्रतिनिधित्व करती हैं, जबिक लेबल की गई ठोस आकृतियाँ सीएसआई मूल्यों का प्रतिनिधित्व करती हैं। विभिन्न शहरों और पूर्वानुमान के दिनों के लिए उपयुक्त प्रतीक चित्र किंवदंतियों में मौजूद हैं।

चित्र 1. (ए) अस्वस्थ श्रेणी और (बी) अध्ययन अवधि की बहुत अस्वस्थ श्रेणी के लिए सफलता अनुपात, पीओडी, पूर्वाग्रह और सीएसआई कौशल स्कोर का सारांश देने वाला प्रदर्शन आरेख। लेबल की गई धराशायी रेखाएँ पूर्वाग्रह स्कोर का प्रतिनिधित्व करती हैं, जबिक लेबल की गई ठोस आकृतियाँ सीएसआई मूल्यों का प्रतिनिधित्व करती हैं। विभिन्न शहरों और पूर्वानुमान के दिनों के लिए उपयुक्त प्रतीक चित्र किंवदंतियों में मौजूद हैं

शहरी मौसम विज्ञान सेवाएँ

शहरी आबादी की तेजी से वृद्धि मानव विकास के लिए एक प्रेरक शक्ति बन गई है, खासकर विकासशील देशों में। हालाँकि, भीड़-भाड़ वाले शहर रचनात्मकता और आर्थिक प्रगति के केंद्र हैं, लेकिन प्रदूषित हवा, चरम मौसम की स्थिति, बाढ़ और अन्य खतरों के कारण गंभीर चुनौतियों का सामना करते हैं। तेजी से घने, जटिल और अन्योन्याश्रित शहरी ताने-बाने शहरों को अस्रक्षित बना रहे हैं: एक भी चरम घटना अक्सर डाउनस्ट्रीम या "डोमिनोज़" प्रभावों के माध्यम से शहर के ब्नियादी ढांचे के व्यापक विनाश का कारण बन सकती है। शहरीकरण और विकासशील शहर भारत के आर्थिक विकास का चेहरा हैं। शहरी क्षेत्र सामाजिक-आर्थिक गतिविधियों के केंद्र हैं। जलवाय् परिवर्तन शहरों को किस प्रकार प्रभावित करेगा, यह अभी बह्त कम समझा गया है - लेकिन क्षेत्र में कई ब्नियादी ढांचागत निवेशों और जनसंख्या के कारण यह अत्यधिक आर्थिक और सामाजिक प्रासंगिकता है। इसके अतिरिक्त, शहर, शहरी ताप द्वीपों और क्षेत्रीय जल विज्ञान (वर्षा परिवर्तन के माध्यम से), और वाय् ग्णवता (शहरी एरोसोल) को के संशोधित करने कारण अपना स्वयं माइक्रॉक्लाइमेट बनाते हैं।


विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) मानता है कि तेजी से हो रहे शहरीकरण के लिए नई प्रकार की सेवाओं की आवश्यकता होती है जो विज्ञान और प्रौद्योगिकी का सर्वोत्तम उपयोग करती हैं और इन्हें प्रदान करने की च्नौती को मौसम विज्ञान सम्दाय के लिए म्ख्य प्राथमिकताओं में से एक मानती है। पारंपरिक अर्थों में शहरी सेवाएँ परिवहन, आवास, जल प्रबंधन, अपशिष्ट प्रबंधन, बर्फ हटाने आदि से संबंधित हैं। तेजी से बदलते शहरी स्वरूप में, मौसम, जलवाय्, जल विज्ञान और वाय् ग्णवता के ब्नियादी ढांचे (डेटा) से युक्त शहरी एकीकृत सेवाओं की आवश्यकता है पारंपरिक (और नई) शहरी सेवाओं का समर्थन करने के लिए, अवलोकन, भविष्यवाणियां) वर्षों से, उष्णकटिबंधीय चक्रवातों, तूफानों, चक्रवातों को कवर करने वाली चरम मौसम की घटनाओं की अत्याध्निक निगरानी, पता लगाने और प्रारंभिक चेतावनी के लिए विशेष सेवाएं भी बनाई गई हैं। तटीय बाढ़, बाढ़, वाय् ग्णवता, स्वास्थ्य संबंधी तनाव, धूल भरी आंधियां, भारी बारिश और बर्फबारी की घटनाएं, ठंड और गर्मी की लहरें, आदि के साथ-साथ बिल्डिंग कोड, ज़ोनिंग, योजना और डिजाइन के लिए जलवाय् सेवाएं।

एक एकीकृत प्रारंभिक चेतावनी प्रणाली प्रदान करने के प्रयास में, भारत मौसम विज्ञान विभाग (IMD) ने भारत के 50+ शहरों के लिए शहरी मौसम विज्ञान सेवाएं विकसित की हैं (https://internal.imd.gov.in/pages/city_weather_main_ mausam.php)। शहरी एकीकृत सेवा प्रणालियों को आत्मसात और मॉडल आरंभीकरण, शहरी चंदवा मॉडल, शहरी वनस्पति, भूमि उपयोग और भूमि कवर (जोखिम और भेद्यता दोनों के साथ-साथ मिटटी की पारगम्यता दोनों का आकलन करने के लिए, जो खतरे को प्रभावित कर सकता है) के लिए अच्छे पैमाने पर शहरी डेटा अवलोकनों पर विचार करने की आवश्यकता है अंतराल समय की) समग्र भविष्यवाणी, अनिश्चितताओं की मात्रा का ठहराव और बह-विषयक दृष्टिकोण की आवश्यकता वाली प्रक्रियाएं। बढ़ती मांग के साथ, आईएमडी ने घने अवलोकन नेटवर्क, उच्च-रिज़ॉल्यूशन पूर्वान्मान, बह्-खतरा प्रारंभिक चेतावनी प्रणाली और जलवाय् सेवाओं को बढ़ावा देने के साथ राजधानी के लिए स्थान-विशिष्ट गंभीर मौसम की चेतावनी प्रदान करने के लिए पहले से ही शहरी मौसम विज्ञान सेवाओं को अपनी प्राथमिकता परियोजनाओं में से एक के रूप में लिया है। सतत विकास लक्ष्य. हालाँकि, स्मार्ट सिटी और अन्य मेगासिटी जैसे अन्य शहरी केंद्र भी हैं। भारतीय शहरों के विस्तार को देखते हुए, शहरी केंद्रों के लिए ब्नियादी ढांचे को मजब्त करने और एकीकृत पर्यावरण/मौसम सेवाएं प्रदान करने की अनिवार्य आवश्यकता है। एकीकृत शहरी मौसम विज्ञान सेवाएँ विभिन्न पैमाने पर विभिन्न जल-मौसम संबंधी खतरों के लिए निर्बाध अवलोकन/पूर्वान्मान प्रदान करती हैं जिनमें निम्न की भविष्यवाणी शामिल है:

- गर्मी की लहरें और शीत लहरें
- कोहरा
- चक्रवात
- पानी की बाढ़
- सूखा
- तेज़ हवाएँ और तूफ़ान
- ओलावृष्टि
- आंधी और बिजली गिरना
- स्थानीय संवहनात्मक गतिविधियों के लिए प्रभाव-आधारित चेताविनयाँ

शहरी मौसम विज्ञान सेवा वेबपेज प्रदान करता है (चित्र 1):

- 1. वर्तमान मौसम अवलोकन
- 2. वर्तमान वाय् ग्णवत्ता अवलोकन
- मौसम का पूर्वान्मान
- 4. वायु गुणवत्ता पूर्वानुमान

चित्र 2. दिल्ली-एनसीआर के लिए शहरी मौसम विज्ञान सेवाओं का टेम्पलेट वेब पेज

- जिलेवार मौसम की चेतावनी
- 6. नाउकास्ट

मौसम अवलोकन

परिवेशी वायु तापमान, सापेक्ष आर्द्रता, वर्षा, हवा की गति और हवा की दिशा बुनियादी मौसम अवलोकन हैं। विभिन्न स्थानों से स्वचालित मौसम स्टेशनों (एडब्ल्यूएस) का उपयोग करके देखे गए प्रति घंटा मौसम पैरामीटर प्रस्तुत किए जाते हैं और ग्राफिकल रूप में भी प्रदर्शित किए जाते हैं। AWS एक मौसम विज्ञान स्टेशन है जिस पर अवलोकन स्वचालित रूप से किए और प्रसारित किए जाते हैं। सभी अवलोकन भारतीय मानक समय (आईएसटी) में 24 घंटे की घड़ी के समय पर रिपोर्ट किए जाते हैं।

वायु गुणवत्ता अवलोकन

आईएमडी, सीपीसीबी और एसपीसीबी जैसे विभिन्न स्रोतों से विभिन्न अवलोकन प्लेटफार्मों से वायु गुणवत्ता अवलोकन जैसे पीएम2.5, पीएम10 कुल ओजोन और धूल उत्पादों को यूएमएस के तहत शामिल किया गया है। विभिन्न स्थानों से स्वचालित वायु गुणवत्ता निगरानी स्टेशनों का उपयोग करके देखे गए प्रति घंटा वायु गुणवत्ता पैरामीटर प्रस्तुत किए जाते हैं और ग्राफिकल रूप में भी प्रदर्शित किए जाते हैं।

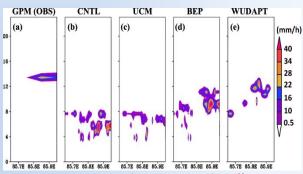
पूर्वानुमान उत्पाद

मौसम पूर्वानुमान चार्ट: उच्च-रिज़ॉल्यूशन (3 किमी) मेसोस्केल मौसम अनुसंधान और पूर्वानुमान (डब्ल्यूआरएफ) मॉडलिंग प्रणाली अपने स्वयं के संयोजन के साथ हवा की गति और हवा की दिशा (समुद्र तल से 10 मीटर की ऊंचाई पर) के लिए 72 घंटे (3-दिन) का पूर्वानुमान उत्पन्न करती है। सापेक्ष आर्द्रता (2 मीटर की ऊंचाई पर), तापमान (2 मीटर की ऊंचाई पर) और वर्षा। एनडब्ल्यूपी उत्पादों के बारे में अधिक जानकारी यहां पाई जा सकती है:

https://mausam.imd.gov.in/imd_latest/contents/faq.php#I

मौसम पूर्वानुमान बुलेटिन : अगले पांच दिनों के लिए दिल्ली-एनसीआर के लिए जिलेवार मौसम का पूर्वानुमान।

चेतावनियाँ : अगले 5 दिनों के लिए तूफान, भारी वर्षा आदि जैसे गंभीर मौसम के लिए शहर/वार्ड/ज़ोन-वार चेतावनियाँ आईएमडी द्वारा रंग कोडित रूप में प्रदान की जाती हैं ताकि आम जनता आसानी से समझ सके। हरा - कोई चेतावनी नहीं; पीला - देखो; नारंगी - चेतावनी; लाल - चेतावनी.


नाउकास्ट : जिलेवार नाउकास्ट चेतावनियाँ विभिन्न रंगों के साथ मानचित्र पर ग्राफिक रूप से प्रदान की जाती हैं। मौसम का पूर्वानुमान जिसमें वर्तमान मौसम और कुछ घंटे आगे (लेकिन 24 घंटे से कम) तक के पूर्वानुमान का विवरण दिया जाता है, नाउकास्ट कहलाता है। हरा - कोई चेतावनी नहीं; पीला - देखो; नारंगी - चेतावनी; लाल – चेतावनी

वायु गुणवत्ता पूर्वानुमान

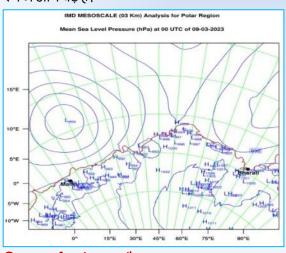
पीएम10, पीएम2.5, ओजोन और धूल सांद्रता के लिए वायु गुणवत्ता का पूर्वानुमान। पूर्वानुमान FMI-IMD SILAM v5.7 मॉडल के आधार पर तैयार किया जाता है। वायुमंडलीय संरचना के एकीकृत मॉडलिंग के लिए प्रणाली (सिलैम) एक वैश्विक-से-मेसो-स्केल फैलाव मॉडल है जिसे वायुमंडलीय संरचना, वायु गुणवत्ता और आपातकालीन निर्णय समर्थन अनुप्रयोगों के साथ-साथ व्युत्क्रम फैलाव समस्या समाधान के लिए विकसित किया गया है। मॉडल यूलेरियन और लैग्नेंजियन परिवहन गतिशीलता, 8 रसायन-भौतिक परिवर्तन मॉड्यूल (मूल एसिड रसायन विज्ञान और माध्यमिक एयरोसोल गठन, क्षोभमंडल और समताप मंडल में ओजोन गठन, हवा में एयरोसोल गतिशीलता, पराग परिवर्तन) और 3डी और 4डी परिवर्तनीय डेटा आत्मसात का उपयोग करता है।

शहरी मौसम विज्ञान सेवाओं में अनुसंधान एवं विकास प्रयास

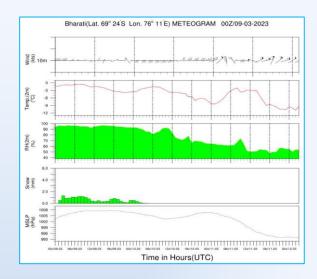
शहरों में वृद्धि और शहरी क्षेत्र में उपयोग किए जा रहे संसाधनों की एकाग्रता पर्यावरणीय वहन क्षमता को प्रभावित करती है। इससे वायु प्रदूषण में वृद्धि, शहरी ताप तनाव में वृद्धि, स्वास्थ्य पर प्रभाव, तनावपूर्ण गतिशीलता और ऊर्जा उपयोग जैसे अनपेक्षित परिणाम सामने आते हैं। ऐसे दीर्घकालिक परिवर्तन भी हैं जो वर्षा के पैटर्न और चरम सीमा में बदलाव के कारण लचीलेपन को प्रभावित करते हैं। उदाहरण के लिए, भारतीय मानसून क्षेत्र पर विकसित एक हालिया अध्ययन में, यह दिखाया गया कि हाल के दशकों में देखी गई वर्षा की चरम सीमा में वृद्धि केवल उन क्षेत्रों में देखी गई है, जहां शहरीकरण में वृद्धि देखी गई है। कई अध्ययनों ने विभिन्न विश्लेषणों और डेटासेट के माध्यम से यह परिणाम दिखाया है। ऐसे परिवर्तनों (जैसे गर्मी की लहरें, बाढ़, पानी की कमी, आदि) की सीमा का आकलन करने और कारण-प्रभाव (विशेषण/पहचान) अध्ययन की अच्छी समझ विकसित करने की चुनौती चल रही है। नादिमपल्ली एट अल., 2022 ने भुवनेश्वर शहर के गंभीर संवहन के अनुकरण में शहरी विशिष्ट रूपात्मक परिवर्तनों के प्रभाव का प्रदर्शन किया। आगे के अध्ययनों ने वर्षा पैटर्न की पहचान करने में बहुत उच्च रिज़ॉल्यूशन क्लाउड अनुमित मॉडल में गितशील भूमि उपयोग भूमि कवर परिवर्तनों के यथार्थवादी प्रतिनिधित्व की भी प्ष्टि की है।

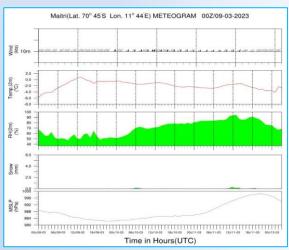
चित्र3. वर्षा दर (मिमी/ घंटा) का समय-देशांतर क्रॉस सेक्शन (ए) जीपीएम, (बी) सीएनटीएल, (सी) यूसीएम, (डी) बीईपी और (ई) 30 मई 2017 के लिए डब्ल्यूयूडीएपीटी (स्रोत: नादिमपल्ली एट अल. 2022)

चित्र 3 (ए-ई) क्रमशः वैश्विक वर्षा माप (जीपीएम), सीएनटीएल, यूसीएम, बीईपी और डब्ल्यूयूडीएपीटी से भ्वनेश्वर शहर में औसत प्रति घंटा बारिश दर (मिमी घंटा -1) के अस्थायी-अन्दैर्ध्य विकास को दर्शाता है। जीपीएम क्षेत्रों की समीक्षा करते हुए, वर्षा 11 यूटीसी के बाद 85.75°-85.95°ई के आसपास श्रू हुई और 12 यूटीसी पर अधिकतम (28-34 मिमी घंटा-1) हो गई। सीएनटीएल सिम्युलेटेड बारिश की दर 40 मिमी घंटा-1 से अधिक है। प्रेक्षणों की तुलना में यह घटित होने की प्रारंभिक अवस्था है (चित्र 3बी)। 3(ए)]. सीएनटीएल रन में 89°ई के आसपास अधिकतम वर्षा का अन्करण नहीं किया जाता है। यूसीएम प्रयोग में, वर्षा का परिमाण केवल 10-16 मिमी घंटा-1 है, प्रारंभिक घटना के साथ [चित्र। 3(सी)]. बीईपी और डब्ल्यूयूडीएपीटी प्रयोग घटना के समय त्र्टि को कम कर सकते हैं [चित्र 3(डी और ई)]। इसके अलावा, अनुरूपित वर्षा के स्थानिक पैटर्न और समय दोनों में सुधार ह्आ है और WUDAPT रन में अवलोकन के करीब हैं।


हाई एल्टीट्यूड बैकग्राउंड क्लाइमेट मॉनिटरिंग स्टेशनः आईएमडी एक बैकग्राउंड क्लाइमेट मॉनिटरिंग स्टेशन रानीचौरी, उत्तराखंड का रखरखाव करता है। स्टेशन पर स्काईरेडियोमीटर, एथलोमीटर, डिफरेंशियल मोबिलिटी पार्टिकल साइजर, नेफेलोमीटर, सौर विकिरण निगरानी उपकरण, वर्षा रसायन विज्ञान और सतह ओजोन विश्लेषक स्थापित किए गए हैं। रानीचौरी में CO₂, N₂O, CH₄ और CO सांद्रता के मापन के लिए साइट ऑनलाइन GHGs मॉनिटरिंग सिस्टम स्थापित किया गया है।

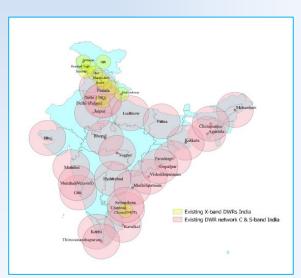
ध्वीय मौसम विज्ञान अन्संधान प्रभाग (पीएमआरडी)


ध्वीय मौसम विज्ञान अन्संधान


भारत मौसम विज्ञान विभाग 1981 के दौरान पहले अभियान के बाद से अंटार्कटिका (आईएसईए) के सभी भारतीय वैज्ञानिक अभियान का एक अभिन्न अंग रहा है। आईएमडी ने जनवरी, 1990 से (9^व आईएसईए से) मैत्री स्टेशन पर मौसम विज्ञान और ओजोन अवलोकन शुरू किया और आज तक जारी है। 2015 में आईएमडी द्वारा अंटार्कटिका में एक अन्य भारतीय स्टेशन भारती में एक मौसम विज्ञान वेधशाला शुरू की गई थी। ओजोन की उध्वधिर प्रोफ़ाइल का अवलोकन भी भारती में नियमित रूप से किया जाता है।

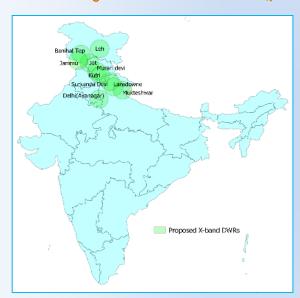
अंटार्किटिका में मैत्री और भारती क्षेत्र के लिए 3 किमी रिज़ॉल्यूशन पर दिन-प्रतिदिन 72 घंटे का मौसम पूर्वानुमान प्रदान करने के लिए पोलर डब्ल्यूआरएफ मॉडल का नवीनतम संस्करण चालू किया गया है। अंटार्किटिक अभियान के समर्थन के लिए एनडब्ल्यूपी उत्पाद नियमित रूप से आईएमडी वेब साइट पर उपलब्ध कराए जाते हैं। मैत्री और भारती में से प्रत्येक में दो आईएमडी अधिकारी 42 आईएसईए के अभियान सदस्य के रूप में आगे बढ़े हैं।

चित्र **4. धुवीय क्षेत्र पर औसत समुद्र तल दबाव** (hPa) का स्थानिक आलेख



चित्र 5. भारती और मैत्री स्टेशनों पर T2m (°C), RH 2m (%), हवा (Kts), MSLP (hPa) और बर्फ (मिमी) का मौसम आरेख

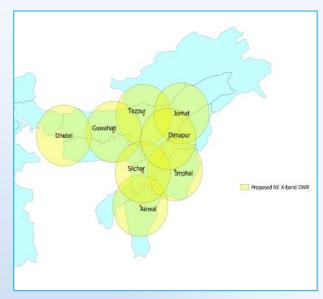
4.4. रडार अवलोकन


(ए) रडार का नेटवर्क

मौजूदा डीडब्ल्यूआर नेटवर्क

आईएमडी पूरे भारत में कुल 37 एस-बैंड, सी-बैंड और एक्स-बैंड डीडब्ल्यू आर से युक्त डॉपलर मौसम रडार नेटवर्क का संचालन और रखरखाव करता है। इसमें 22 एस-बैंड, 02 पोलारिमेट्रिक सी-बैंड डीडब्ल्यू आर और 13 एक्स-बैंड डीडब्ल्यू आर शामिल हैं। वेरावली (मुंबई) और पल्लीकरनई में दो स्वदेशी रूप से निर्मित एक्स-बैंड पोलारिमेट्रिक डीडब्ल्यू आर स्थापित किए गए हैं। 2022 के दौरान, चार पोलिमेट्रिक डीडब्ल्यू आर अर्थात् डीडब्ल्यू आर जोत, डीडब्ल्यू आर मुरारी देवी, डीडब्ल्यू आर सुरकंडा जी और डीडब्ल्यू आर बनिहाल को आईएमडी नेटवर्क में शामिल किया गया है। 34 डीडब्ल्यू आर के अलावा, आईएमडी तिरुवनंतपुरम (सी-बैंड) में इसरो द्वारा स्थापित डीडब्ल्यू आर का भी उपयोग करता है। चेरापूंजी (एस-बैंड) और श्रीहरिकोटा (सी-बैंड)।

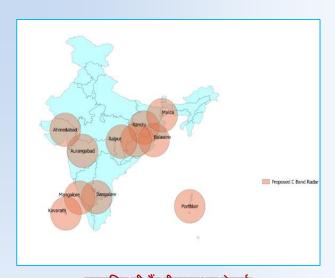
(बी) आईएचएमपी डुअल पोलराइज्ड एक्स-बैंड डीडब्ल्यूआर



आईएचएमपी एक्स-बैंड डीडब्ल्यूआर नेटवर्क

IHMP (एकीकृत हिमालय मौसम विज्ञान कार्यक्रम) के तहत भारत में दोहरी ध्रुवीकृत 10 एक्स-बैंड डीडब्ल्यूआर स्थापित किए जा रहे हैं। 10 में से 09 डीडब्ल्यूआर पहले ही लेह, कुफरी, मुक्तेश्वर, जम्मू, आयानगर, बनिहाल टॉप, सुरकंडा देवी, जोत, मुरारी देवी में स्थापित किए जा चुके हैं। ये सभी रडार भारत के माननीय प्रधान मंत्री के "मेक इन इंडिया -आत्मनिर्भर भारत" के आत्मनिर्भरता लक्ष्य की उपलब्धि का एक उदाहरण हैं।

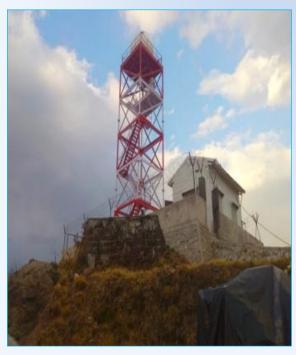
(सी) उत्तर पूर्व क्षेत्र के लिए प्रस्तावित दोहरी धुवीकृत एक्स-बैंड डीडब्ल्यूआर


भारत के उत्तर पूर्व क्षेत्र में 08 दोहरे ध्रुवीकृत एक्स-बैंड डीडब्ल्यूआर स्थापित करने का प्रस्ताव है।

उत्तर पूर्व में प्रस्तावित एक्स-बैंड डीडब्ल्यूआर नेटवर्क

(डी) प्रस्तावित दोहरी धुवीकृत 11 सी-बैंड डीडब्ल्यूआर

भारत की मुख्य भूमि पर 11 दोहरे ध्रुवीकृत सी-बैंड डीडब्ल्यूआर स्थापित करने का प्रस्ताव है


प्रस्तावित सी-बैंड डीडब्ल्यूआर नेटवर्क

पश्चिमी और मध्य हिमालय के लिए एकीकृत हिमालय मौसम विज्ञान कार्यक्रम (आईएचएमपी) के तहत लेह में स्थापित मोबाइल प्लेटफॉर्म पर एक परिवहन योग्य एक्स-बैंड डॉपलर मौसम रडार स्थापित किया गया है (चित्र 36)। आईएमडी द्वारा स्थापित यह डीडब्ल्यूआर भारत में सबसे अधिक ऊंचाई पर है।

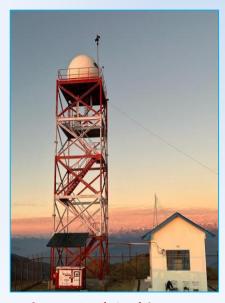
लेह में पोर्टेबल एक्स-बैंड डॉपलर मौसम रडार

टावर आधारित एक्स-बैंड डीडब्ल्यूआर मुक्तेश्वर (उत्तराखंड), कुफरी, (हिमाचल प्रदेश), जम्मू (जम्मू-कश्मीर), आयानगर (नई दिल्ली), बनिहाल टॉप (जम्मू और कश्मीर), सुरकंडा देवी (उत्तराखंड), जोत (हिमाचल) में स्थापित किए गए हैं। प्रदेश) और मुरारी देवी (हिमाचल प्रदेश) IHMP के अंतर्गत। दो स्वदेशी डीडब्ल्यूआर, यानी, पल्लीकरनई में एक्स-बैंड डीडब्ल्यूआर और वेरावली, मुंबई में सी-बैंड को भी इसरो द्वारा प्रदान किए गए आईएमडी नेटवर्क में जोड़ा गया है।

उत्तराखंड के मुक्तेश्वर में डीडब्ल्यूआर

हिमाचल प्रदेश के कुफरी में डीडब्ल्यूआर

जम्मू और कश्मीर में जम्मू में डीडब्ल्यूआर


नई दिल्ली में आयानगर में डीडब्ल्यूआर

जम्मू और कश्मीर में बनिहाल टॉप पर डीडब्ल्यूआर

उत्तराखंड में सुरकंडा देवी में डीडब्ल्यूआर

हिमाचल प्रदेश में जोत में डीडब्ल्यूआर

हिमाचल प्रदेश में मुरारी देवी में डीडब्ल्यूआर

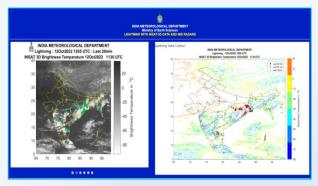
तमिलनाडु में चेन्नई के पल्लीकरनई में डीडब्ल्यूआर

मुंबई, महाराष्ट्र में वेरावली में डीडब्ल्यूआर

4.5. उपग्रह अवलोकन

आईएमडी ने मेसर्स एंट्रिक्स कॉर्पोरेशन लिमिटेड, इसरो के साथ एक समझौता ज्ञापन के माध्यम से इन्सैट-3डी, इन्सैट-3डीआर और इन्सैट-3डीएस उपग्रहों के लिए मल्टी-मिशन मौसम संबंधी डेटा प्राप्त करने और प्रसंस्करण प्रणाली (एमएमडीआरपीएस) की स्थापना की है। एमएमडीआरपीएस परियोजना के तहत समर्पित न्यू अर्थ स्टेशन स्थापित किए गए हैं, जिनमें इन्सैट-3डी, इन्सैट-3डीआर और आगामी इन्सैट-3डीएस उपग्रह से डेटा प्राप्त करने की क्षमता है। एमएमडीआरपीएस सिस्टम में उन्नत और नवीनतम अत्याध्निक सर्वर शामिल हैं जो ऑर्डर 2.0/2.0पीबी (मेन/मिरर) और 324टीबी एसएसडी की भंडारण क्षमता के साथ स्कैनिंग के पूरा होने के बाद 7 मिनट के भीतर डेटा के पूरे सेट को संसाधित करने में सक्षम हैं जो ऑनलाइन साझा करने की स्विधा प्रदान करेगा। पंजीकृत उपयोगकर्ताओं को सभी भारतीय मौसम विज्ञान उपग्रहों के लिए संसाधित डेटा प्रदान करना। 1983 से श्रू होने वाले सभी उपलब्ध पिछले उपग्रह डेटासेट को समय के साथ ऑनलाइन मोड में रखा जाएगा।

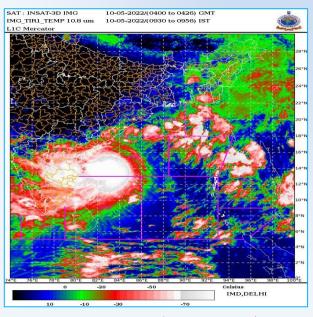
इन्सैट-3डी और इन्सैट-3डीआर के इमेजर पेलोड का उपयोग क्रमबद्ध मोड में किया जा रहा है ताकि प्रभावी ढंग से 15 मिनट का अस्थायी समाधान प्राप्त किया जा सके। चरम मौसम की घटनाओं के दौरान, रैपिड स्कैनिंग के लिए INSAT 3DR इमेजर का उपयोग किया जाता है। प्रमुख चक्रवाती घटनाओं यानी तौकता, यास, गुलाब, शाहीन, जवाद और आसनी के दौरान रैपिड स्कैन आयोजित किया गया है। चक्रवाती घटनाओं के दौरान किए गए रैपिड स्कैन की छिवयों को नए विकसित समर्पित वेब पेज (http://satellite.imd.gov.in/rapid/ rapid_scan.htm) के माध्यम से प्रसारित किया जा रहा है।



उपग्रह डेटा से प्राप्त उत्पादों में शामिल हैं: दृश्य में बादल छवियां, शॉर्ट वेव इंफ्रा-रेड, मिड इंफ्रा-रेड, थर्मल इंफ्रा-रेड, जल

वाष्प चैनल और विशेष उन्नत छवियां, वाय्मंडलीय मोशन वेक्टर (आईआर पवन, जल वाष्प हवाएं, एमआईआर और दृश्यमान हवाएं), सम्द्र की सतह का तापमान, बाहर जाने वाली लंबी-तरंग विकिरण, भूमि की सतह का तापमान (एलएसटी), सूर्यातप, मात्रात्मक वर्षा अनुमान, रात के समय कोहरा, धुआं, आग, बर्फ का आवरण, एरोसोल ऑप्टिकल गहराई, ऊपरी ट्रोपोस्फेरिक आर्द्रता, बादल शीर्ष तापमान, बादल शीर्ष दबाव, तापमान और आर्द्रता प्रोफाइल, कुल ओजोन, कुल/परत अवक्षेपणीय जल वाष्प, स्थिरता सूचकांक। इनके अलावा, आईएमडी ने इमेजर का उपयोग करके पवन व्युत्पन्न उत्पादों जैसे वोर्टिसिटी (850 एमबी, 700 एमबी, 500 एमबी, 200 एमबी स्तर पर), विंड शीयर, मिड-लेवल विंड शीयर, शीयर टेंडेंसी, लो लेवल कन्वर्जेंस और अपर लेवल डाइवर्जेंस का उत्पादन भी शुरू कर दिया है। साउंडर डेटा का उपयोग करके सभी जिला स्थानों पर पवन उत्पाद और एनसीईपी पूर्वान्मान फ़ाइल और टी-फाई ग्राम। इन सभी छवियों और उत्पादों को समर्पित आईएमडी वेबसाइट के माध्यम से वास्तविक समय के आधार पर प्रसारित किया जाता है।

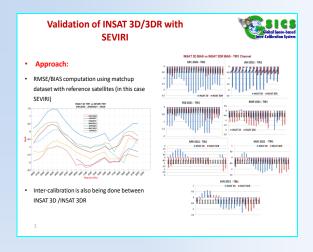
आईएमडी ने 25 लोगों का एक देशव्यापी नेटवर्क स्थापित किया है। "पृथ्वी और वाय्मंडलीय अध्ययन" के लिए ग्लोबल नेविगेशन सैटेलाइट सिस्टम (जीएनएसएस) स्टेशन स्थापित किए गए हैं और एकीकृत अवक्षेपण जल वाष्प (आईपीडब्ल्यूवी) को चलाने के लिए चालू किया गया है। आईपीडब्ल्यूवी डेटा का उपयोग अब मौसम पूर्वानुमान में स्धार के लिए एनडब्ल्यूपी मॉडल में कास्टिंग और आत्मसात करने के लिए किया जा रहा है। वास्तविक समय में 25 जीएनएसएस साइट के आईपीडब्ल्यूवी डेटा तक पहुंचने के लिए एक समर्पित वेबसाइट विकसित की गई है। मौसम संबंधी डेटा और आईपीडब्ल्यू के न्यूनतम और अधिकतम मूल्य आदि के साथ 15 मिनट, प्रति घंटा, दैनिक, साप्ताहिक और मासिक आईपीडब्ल्यू डेटा को देखने के लिए ग्राफिकल यूजर इंटरफेस भी प्रदान किया गया था। आईपीडब्ल्यूवी डेटा को एनडब्ल्यूपी मॉडल में आत्मसात करने के लिए वास्तविक समय के आधार पर एनसीएमआरडब्ल्यूएफ के साथ साझा किया जा रहा है।

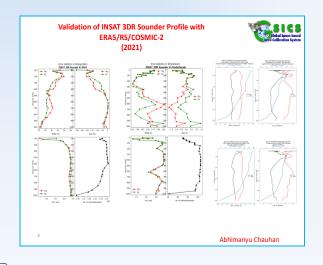

सैटेलाइट और लाइटिंग मर्ज किए गए उत्पाद आईएमडी वेबसाइट पर भी चालू हैं। मर्ज किए गए लाइटिनंग और सैटेलाइट क्लाउड टॉप तापमान परिचालन उत्पाद आईएमडी, आईआईटीएम और आईएएफ का संयुक्त सहयोग है। मौसम पूर्वानुमान के लिए सैटेलाइट+रडार और लाइटिनंग डेटा (सभी 3 प्रकार के उपकरण डेटा) को मर्ज करने पर काम चल रहा है।

उपग्रह और प्रकाश व्यवस्था के उत्पादों का विलय हो गया

संसाधित उपग्रह डेटा (डिजिटल, छिव, उत्पाद) का उपयोग परिचालन मौसम पूर्वानुमानकर्ताओं, आईएएफ, भारतीय नौसेना, भारतीय तट रक्षक), आपदा प्रबंधन प्राधिकरण, अंतरराष्ट्रीय मौसम विज्ञान एजेंसियों द्वारा वास्तविक समय के आधार पर मौसम पूर्वानुमान जारी करने के लिए किया जा रहा है। नियमित आधार

ए. इन्सैट-3डी और इन्सैट-3डीआर के इमेजर पेलोड का उपयोग क्रमबद्ध मोड में किया जा रहा है ताकि प्रभावी ढंग से 15 मिनट का अस्थायी समाधान प्राप्त किया जा सके। चरम मौसम की घटनाओं के दौरान, INSAT 3DR इमेजर का उपयोग गंभीर मौसम/चक्रवात के दौरान रैपिड स्कैनिंग में किया जाता है। प्रमुख चक्रवाती घटनाओं, विशेष रूप से गंभीर चक्रवाती तूफान, यानी तौकता, यास, गुलाब, शाहीन, जवाद और आसनी के दौरान रैपिड स्कैन आयोजित किया गया था।


चित्र 2. चक्रवात की घटनाओं के दौरान तेजी से स्कैन, अंशांकन और सत्यापन गतिविधियाँ


सीएएल वैल गुणांक के साथ INSAT3D/3DR GSICS सुधार (TIR1/TIR2/MIR और WV) को MMDRPS में अक्सर लागू किया जा रहा है। SEVIRI के साथ INSAT 3D/3DR इमेजर और RS, IRA5, कॉस्मिक-2 के साथ INSAT 3DR साउंडर का सत्यापन।

INSAT-3D और -3DR (जनवरी 2020 में आयोजित CalVal अभियान) की विचित्र अंशांकन रिपोर्ट के साथ, गुणांकों को MMDRPS परिचालन प्रणालियों में सफलतापूर्वक अद्यतन किया गया है।

कच्छ के ग्रेट रण में INSAT-3D/3DR अंशांकन अभियान चलाया गया है। यह अंतरिक्ष अनुप्रयोग केंद्र (इसरो), अहमदाबाद (8 से 11 फरवरी 2022) के साथ एक संयुक्त अभियान था।

स्लाइड्स में तस्वीरें और नतीजे नीचे दिए गए हैं:

Recent Activities in CAL/VAL

INSAT-3D/3DR calibration campaign in Great Rann of Kutchh A Joint Campaign with Space Applications Centre (ISRO), Ahmadabad

IMD with CalVal Instruments to carry out calval activities. Calval Campaign was carried out to account the characterization errors or undetermined post-launch changes in spectral response of the sensor. The measurements include

- Surface reflectance using ASD Spectro-radiometer 2. Aerosol, Ozone and water vapour using MicroTops-II sunphotometer and Ozonometer.
- For CAL/VAL campaign, RS observations were launched on 8th and 9th February at <mark>06 UTC</mark> from which vertical profiles of the temperature and humidity including wind observation were obtained.
- Surface observations like dry bulb temperature, Dew point Temperature, wind speed etc were also taken through surface observatories.

उष्णकटिबंधीय चक्रवात निगरानी और भविष्यवाणी 2022

बंगाल की खाड़ी के ऊपर गंभीर चक्रवाती तूफान ASANI (7 - 12 मई, 2022): एक रिपोर्ट

ASANI का जीवन इतिहास

- 6 मई, 2022 की स्बह (0830 बजे IST) दक्षिण अंडमान सागर और निकटवर्ती बंगाल की खाड़ी के निकट एक कम दबाव का क्षेत्र बना। ७ मई की स्बह (05:30 बजे IST)।
- अन्कूल पर्यावरणीय परिस्थितियों में, यह उसी दिन, 7 मई, 2022 की दोपहर (1130 बजे IST) के आसपास उसी क्षेत्र में एक अवसाद में केंद्रित हो गया।
- यह उत्तर-पश्चिम की ओर बढ़ा और 7 मई की उसी शाम (1730 बजे IST) बंगाल की खाड़ी के दक्षिण-पूर्व में एक गहरे दबाव में बदल गया।
- उत्तर-पश्चिम की ओर बढ़ते ह्ए, यह 8 मई की सुबह (0530 बजे IST) चक्रवाती तूफान "ASANI" में बदल गया और उसी शाम (1730 बजे IST) बंगाल की दक्षिण-पूर्व खाड़ी के ऊपर एक गंभीर चक्रवाती त्रफान में बदल गया। उत्तर-पश्चिम की ओर बढ़ना जारी रखते हुए, यह 9 तारीख की सुबह (0530 बजे IST) पर 55 सम्द्री मील (100-110 किमी प्रति घंटे से 120 किमी प्रति घंटे की रफ्तार) की चरम तीव्रता पर पहुंच गया। 10 बजे दोपहर (भारतीय समयानुसार 11:30 बजे) तक, इस प्रकार 30 घंटे तक इसकी चरम तीव्रता बनी रही।
- 10 मई की शाम से, यह धीरे-धीरे उत्तर-उत्तर-पश्चिम की ओर बढ़ना शुरू कर दिया और 11 मई के शुरुआती घंटों (0230

बजे IST) में मछलीपट्टनम से लगभग 60 किमी दक्षिण-दक्षिणपूर्व में पश्चिम-मध्य बंगाल की खाड़ी के ऊपर एक चक्रवाती तुफान में कमजोर हो गया।

- इसके बाद, यह बह्त धीमी गति से लगभग उत्तर की ओर बढ़ने लगा और 11 मई की शाम (1730 बजे IST) आंध्र प्रदेश तट के करीब पश्चिम मध्य बंगाल की खाड़ी के ऊपर एक गहरे दबाव में कमजोर हो गया।
- यह 11 मई, 2022 को 1730-1930 बजे । उर के दौरान मछलीपट्टनम और नरसाप्र के बीच 16.3°N अक्षांश और 81.3°E देशांतर के पास आंध्र प्रदेश तट को एक गहरे अवसाद के रूप में पार कर गया, जिसमें अधिकतम निरंतर हवा की गति 55-65 किमी प्रति घंटे से लेकर 75 किमी प्रति घंटे तक पहुंच
- इसके बाद यह धीरे-धीरे पश्चिम-दक्षिण-पश्चिम की ओर बढ़ा और सुबह (भारतीय समयानुसार 0530 बजे) कमजोर होकर एक दबाव क्षेत्र में बदल गया और 12 मई की स्बह (0830 बजे भारतीय समयानुसार) तटीय आंध्र प्रदेश के ऊपर एक अच्छी तरह से चिहिनत कम दबाव के क्षेत्र में बदल गया। सिस्टम का देखा गया ट्रैक चित्र में प्रस्तुत किया गया है।

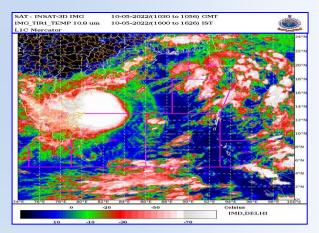
7-12 मई, 2022 के दौरान बंगाल की खाड़ी के ऊपर भीषण चक्रवाती तूफान 'आसानी' का अवलोकन किया गया

म्ख्य विशेषताएं

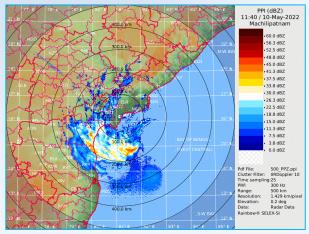
(i) तट को छूने से पहले कमजोर पड़ना

भीषण चक्रवाती तूफ़ान, "असनि" म्ख्यतः निम्नलिखित कारणों से तट को छूने से पहले कमजोर होकर एक गहरे दबाव में बदल गया:

इसने समुद्र की सतह के निचले तापमान और कम समुद्री ताप सामग्री वाले क्षेत्र में प्रवेश किया


- यह तट के पास बहुत धीमी गित से (13 किमी प्रित घंटे की सामान्य गित के मुकाबले 5-6 किमी प्रित घंटे) चला और 11 मई की सुबह से शाम तक समुद्र तट से 50 किमी के भीतर रहा। धीमी गित के कारण समुद्र का पानी ऊपर की ओर बढ़ गया और समुद्र के ऊपर वर्षा हुई जिससे समुद्र की सतह और अधिक ठंडी हो गई।
- धीमी गति के कारण, लंबे समय तक भूमि संपर्क भी बना रहा, जिससे भूमि की सतह के साथ घर्षण बढ़ने के कारण भूमि कमजोर हो गई।
- मध्य और ऊपरी क्षोभमंडल में भारतीय भूभाग से ठंडी और शुष्क हवा का प्रवेश हुआ जो किसी भी चक्रवाती तूफान की तीव्रता को बनाए रखने के लिए प्रतिकृल है।

(ii) एकाधिक पुनरावृत्ति


भीषण चक्रवाती तूफ़ान "आसानी" ने अपने ट्रैक/पथ में कई बार वक्रता प्रदर्शित की। अधिकांश मॉडलों ने तट के पास उत्तर-पश्चिम से उत्तर-पूर्व की ओर सिस्टम की गति की दिशा में बदलाव का सुझाव दिया। हालाँकि, गहरा दबाव (चक्रवात असानी का अवशेष) 11 मई को शाम तक धीरे-धीरे उत्तर/उत्तर-पश्चिम की ओर बढा और उसके बाद धीरे-धीरे पश्चिम-दक्षिण-पश्चिम की ओर चला गया। यह मुख्य रूप से इस तथ्य के कारण था कि चक्रवाती तूफान को पश्चिम से आने वाले मध्य और ऊपरी क्षोभमंडल स्तरों में एक छोटे आयाम वाले पश्चिमी गर्त के प्रभाव के तहत तट के पास उत्तर-पूर्व की ओर बढ़ना था। हालाँकि, जैसे-जैसे तूफान तट की ओर आते-आते कमजोर हआ, तूफान की ऊंचाई कम हो गई और मध्य क्षोभमंडल स्तर तक सीमित हो गई। परिणामस्वरूप, दक्षिण-पूर्वी हवाओं के प्रभ्त्व के कारण तूफान की दिशा बदल गई और उत्तर-पश्चिम की ओर बढ़ने लगी। हालाँकि, प्रायद्वीपीय भारत पर बने एक प्रतिचक्रवात के कारण उत्तर-पश्चिम की ओर आवाजाही प्रतिबंधित/अवरुद्ध थी। इस प्रकार, सिस्टम धीरे-धीरे आगे बढ़ा और तट के पास व्यावहारिक रूप से स्थिर रहा, इसके बाद पश्चिम-दक्षिण-पश्चिम की ओर धीमी गति से आगे बढ़ा, जब तक कि यह क्षेत्र में 12 मई की स्बह एक अच्छी तरह से चिहिनत निम्न दबाव क्षेत्र में कमजोर नहीं हो गया।

भीषण चक्रवाती तूफान की निगरानी, ASANI

भारत मौसम विज्ञान विभाग (आईएमडी) ने उत्तरी हिंद महासागर पर चौबीसों घंटे निगरानी रखी और 6 मई को दक्षिण अंडमान सागर के ऊपर कम दबाव का क्षेत्र बनने से लगभग 8 दिन पहले और गठन से 9 दिन पहले, 28 अप्रैल से चक्रवात की निगरानी की गई थी। बंगाल की खाड़ी के दक्षिण-पूर्व पर दबाव का क्षेत्र। चक्रवात की निगरानी INSAT 3D और 3DR से उपलब्ध उपग्रह अवलोकनों, ध्रवीय परिक्रमा करने वाले उपग्रहों और क्षेत्र में उपलब्ध जहाजों और बोया अवलोकनों की मदद से की गई थी। 10 मई की स्बह से डॉपलर वेदर राडार (डीडब्ल्यूआर) मछलीपट्टनम द्वारा भी सिस्टम की निगरानी की गई। पृथ्वी विज्ञान मंत्रालय (एमओईएस) संस्थानों द्वारा संचालित विभिन्न वैश्विक मॉडल और गतिशील-सांख्यिकीय मॉडल का उपयोग चक्रवात की उत्पत्ति, ट्रैक, भूस्खलन और तीव्रता की भविष्यवाणी करने के लिए किया गया था। आईएमडी की एक डिजीटल पूर्वानुमान प्रणाली का उपयोग विभिन्न मॉडलों के मार्गदर्शन, निर्णय लेने की प्रक्रिया और चेतावनी उत्पाद निर्माण के विश्लेषण और त्लना के लिए किया गया था। इन्सैट 3डी (आर) और डीडब्ल्यूआर मछलीपट्टनम से विशिष्ट इमेजरी नीचे दिए गए चित्र में प्रस्त्त की गई है:

1600 बजे IST पर विशिष्ट (ए) इनसैट 3डी (आर) इमेजरी

1720 पर विशिष्ट (बी) डीडब्ल्यूआर मछलीपट्टनम इमेजरी

पूर्वानुमान प्रदर्शन

(i) उत्पत्ति पूर्वानुमान

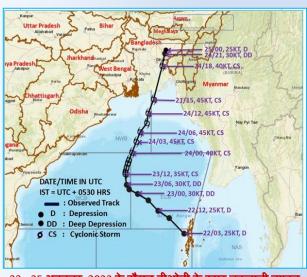
- दक्षिण अंडमान सागर और उससे सटे दक्षिणपूर्व बंगाल की खाड़ी पर दबाव बनने की संभावना के बारे में पहली जानकारी 28 अप्रैल को एक्सटेंडेड रेंज आउटलुक में जारी की गई थी (दबाव बनने से लगभग 9 दिन पहले)।
- 6 मई के आसपास दक्षिण अंडमान सागर के ऊपर निम्न दबाव क्षेत्र के विकास और 7 मई के आसपास अवसाद के बारे में बाद की जानकारी दैनिक उष्णकिटबंधीय मौसम आउटलुक और 29 अप्रैल को जारी राष्ट्रीय मौसम पूर्वानुमान बुलेटिन में निम्न दबाव क्षेत्र के गठन से लगभग 7 दिन पहले जारी की गई थी। 6 मई को दक्षिण अंडमान सागर पर और बंगाल की दिक्षिणपूर्वी खाड़ी पर दबाव बनने से 8 दिन पहले।

(ii) चक्रवात की चेतावनी

- दक्षिण-पूर्व बंगाल की खाड़ी के ऊपर चक्रवाती तूफान के विकास को ध्यान में रखते हुए, आईएमडी ने दक्षिण अंडमान सागर के ऊपर कम दबाव का क्षेत्र बनने पर 6 मई को 1300 बजे IST पर पहला विशेष संदेश और प्रेस विज्ञप्ति जारी की। यह संकेत दिया गया था कि सिस्टम 7 मई की शाम तक डिप्रेशन में बदल जाएगा और 8 मई तक चक्रवाती तूफान में बदल जाएगा। संदेश ने यह भी संकेत दिया कि सिस्टम उत्तर-पश्चिम की ओर बढ़ेगा और 10 मई को उत्तरी आंध्र प्रदेश-ओडिशा तटों से होते हुए पश्चिम-मध्य बंगाल की खाड़ी तक पहुंचेगा। मछुआरों के लिए सलाह के साथ भारी बारिश, तेज हवा और ज्वारीय लहरों की चेतावनी जारी की गई। अवसाद के गठन से पहले, उत्पत्ति के संभावित बिंदु और अपेक्षित प्रणाली के पथ को दर्शाते हुए पूर्व-उत्पत्ति ट्रैक भी जारी किया गया था।
- अच्छी तरह से चिहिनत निम्न दबाव क्षेत्र के विकास पर विशेष संदेश और प्रेस विज्ञिप्त को 7 मई को और अद्यतन किया गया।

(iii) ट्रैक और तीव्रता का पूर्वानुमान

• दबाव के गठन पर 7 मई को 1430 बजे IST पर जारी किए गए पहले क्रमांकित बुलेटिन ने संकेत दिया कि सिस्टम 8 मई को एक चक्रवाती तूफान में बदल जाएगा और 11 मई को उत्तरी आंध्र प्रदेश तट के करीब पहुंच जाएगा। यह भी संकेत दिया गया था कि आंध्र प्रदेश तट के करीब पहुंचने के बाद सिस्टम धीरे-धीरे उत्तर-पूर्व की ओर बढ़ेगा और धीरे-धीरे कमजोर हो जाएगा।

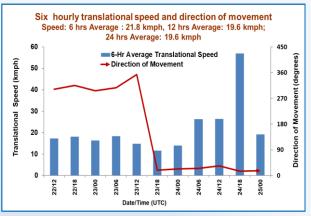

- 7 मई को 2120 बजे 151 पर जारी किए गए अगले बुलेटिन ने आगे संकेत दिया कि यह सिस्टम 8 मई की सुबह एक चक्रवाती तूफान में बदल जाएगा और 8 मई की शाम को एक गंभीर चक्रवाती तूफान में बदल जाएगा। यह भी संकेत दिया गया था कि 11 मई की सुबह सिस्टम कमजोर होकर चक्रवाती तूफान में बदल जाएगा।
- दरअसल, 7 मई को बना डिप्रेशन सुबह में चक्रवाती तूफान में बदल गया और 8 मई की शाम में भीषण चक्रवाती तूफान में बदल गया। इसके बाद 11 मई की सुबह यह कमजोर होकर चक्रवाती तूफान में तब्दील हो गया। इस प्रकार, 7 मई से ही तीव्रता और कमजोर पड़ने की सही भविष्यवाणी की गई थी।

सितारंग का जीवन इतिहास

- 20 अक्टूबर, 2022 की सुबह (0530 बजे IST/0000 UTC) उत्तरी अंडमान सागर और दक्षिण अंडमान सागर और दिक्षणपूर्व बंगाल की खाड़ी (BoB) के आसपास के क्षेत्रों में एक कम दबाव का क्षेत्र बना। 21 अक्टूबर की शाम (1730 बजे IST/1200 UTC) उत्तरी अंडमान सागर और आसपास के दिक्षणपूर्व BoB के ऊपर का क्षेत्र।
- अनुकूल पर्यावरणीय परिस्थितियों में, यह 22 अक्टूबर, 2022 की पूर्वाहन (0830 बजे IST/0300 UTC) में अंडमान द्वीप समूह के करीब दक्षिण-पूर्व और इससे सटे पूर्व-मध्य BoB पर एक अवसाद में केंद्रित हो गया।
- यह उत्तर-पश्चिम की ओर बढ़ा और 23 अक्टूबर की सुबह (0530 बजे IST/0000 UTC) पश्चिम-मध्य BoB पर गहरे दबाव में बदल गया।
- इसके बाद, यह लगभग उत्तर की ओर बढ़ गया और 23 अक्टूबर की शाम (1730 बजे IST/1200 UTC) में चक्रवाती तूफान (CS) "सीतारंग" में बदल गया। इसके बाद यह धीरे-धीरे उत्तर-उत्तरपूर्व की ओर मुझ और 24 अक्टूबर की रात को 2130 से 2330 बजे आईएसटी/1600 से 1800 यूटीसी के दौरान बारिसल (22.15 डिग्री उत्तर/90.35 डिग्री पूर्व के करीब) के करीब तिनकोना और सैंडविप के बीच बांग्लादेश तट को पार कर गया। चक्रवाती तूफान जिसमें अधिकतम निरंतर हवा की गति 80-90 किमी प्रति घंटे से लेकर 100 किमी प्रति घंटे तक की गति हो सकती है।

• उत्तर-उत्तर-पूर्व की ओर बढ़ना जारी रखते हुए, यह शुरुआती घंटों में (25 तारीख के 02:30 बजे आईएसटी/24 तारीख के 2100 यूटीसी) पूर्वोत्तर बांग्लादेश के ऊपर एक गहरे दबाव के क्षेत्र में कमजोर हो गया, और सुबह के समय आंतरिक बांग्लादेश के ऊपर एक गहरे दबाव के क्षेत्र में बदल गया (05:30 बजे आईएसटी/0000 यूटीसी)) 25 अक्टूबर को और 25 अक्टूबर, 2022 की पूर्वाहन (0830 बजे आईएसटी/0300 यूटीसी) में पूर्वोत्तर बांग्लादेश और निकटवर्ती मेघालय पर एक अच्छी तरह से चिहिनत निम्न दबाव क्षेत्र में।

सिस्टम का देखा गया ट्रैक चित्र में प्रस्तुत किया गया है।



22 - 25 अक्टूबर, 2022 के दौरान बीओबी के ऊपर चक्रवाती तूफान 'सीतारंग' का अवलोकन किया गया

मुख्य विशेषताएं

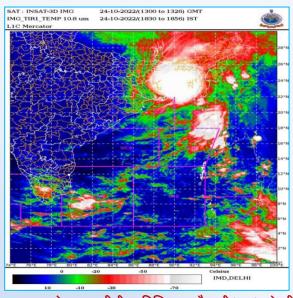
I. रिकर्विंग ट्रैक: सीएस सीतारंग शुरू में 23 तारीख की सुबह तक 200N के पास रिज के दक्षिण में प्रचलित मध्य और ऊपरी क्षोभमंडल स्तर में दक्षिण-पूर्वी हवाओं के प्रभाव में उत्तर-पश्चिम की ओर बढ़ गया, उसके बाद 23 तारीख की रात से यह ट्रफ के प्रभाव में धीरे-धीरे उत्तर-उत्तर-पूर्व की ओर मुड़ गया। पछुआ हवाएँ और इसके पूर्व में म्यांमार के ऊपर एक प्रतिचक्रवात है।

II. तेज गति: पश्चिमी ट्रफ, म्यांमार के ऊपर बने प्रतिचक्रवात और भूमि के साथ संपर्क के प्रभाव में सीएस सीतारंग ने 24 तारीख को बह्त तेज गति का प्रदर्शन किया।

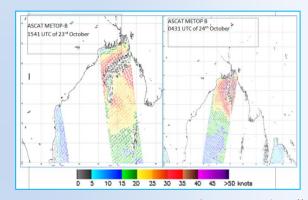
22-25 अक्टूबर, 2022 के दौरान बीओबी पर चक्रवाती तूफान 'सीतारंग' की गति की दिशा और एक्स-अक्ष में उल्लिखित तिथि/समय पर समाप्त होने वाली पिछली छह घंटे की औसत अनुवादात्मक गति 22/1200 यूटीसी के दौरान सिस्टम की बहुत उच्च गति का संकेत देती है।

पूरे जीवन चक्र के दौरान 21.8 किमी प्रति घंटे की औसत ट्रांसलेशनल गति के मुकाबले लैंडफॉल से ठीक पहले 22/1800 यूटीसी, मानसून के बाद के मौसम के दौरान बीओबी पर सीएस श्रेणी के लिए सामान्य 12.9 किमी प्रति घंटे के मुकाबले सिस्टम की 6 घंटे की औसत ट्रांसलेशनल गति लगभग 21.8 किमी प्रति घंटे थी। बांग्लादेश तट को पार करते समय 24 तारीख के 1200-1800 यूटीसी के दौरान यह लगभग 50 किमी प्रति घंटे की गति से बहुत तेजी से आगे बढ़ा (चित्र)। इतनी अधिक ट्रांसलेशनल गति (लगभग 40 किमी प्रति घंटा) आखिरी बार बेहद गंभीर चक्रवाती तूफान सिद्र (11-16 नवंबर, 2007) के दौरान देखी गई थी, जो 15 नवंबर, 2007 को 89.8 डिग्री पूर्व के करीब 1700 यूटीसी के आसपास बांग्लादेश तट को पार कर गया था।

III. लघु जीवन अविधः तूफान की जीवन अविधि (अवसाद से अवसाद) लगभग 69 घंटे (2 दिन और 21 घंटे) थी, जबिक लंबी अविधि का औसत (एलपीए) (1990-2013) लगभग 88 घंटे (3 दिन और 16 घंटे) था। मानसून के बाद के मौसम के दौरान बीओबी पर सीएस श्रेणी के लिए।


IV. कतरनी तूफान: उपग्रह अवलोकनों ने मध्यम उध्वीधर पवन कतरनी वाले वातावरण में प्रणाली के गठन के कारण चक्रवाती तूफान के साथ संवहनशील बादलों की कतरनी प्रकृति का पता लगाया। बादल चक्रवात केंद्र के उत्तर की ओर छंट गए। पर्यावरणीय उध्वीधर पवन कतरनी ने अपने छोटे जीवन काल के

दौरान तूफान की गति और प्रणाली की तीव्रता को प्रभावित किया।


V. क्षिति क्षमता और विद्युत अपव्यय सूचकांकः सीएस सितारंग के सहयोग से संचित चक्रवात ऊर्जा (क्षिति क्षमता का एक माप) और विद्युत अपव्यय सूचकांक (नुकसान का एक माप) क्रमशः 0.97 × 104 समुद्री मील 2 और 0.40 × 106 समुद्री मील 3 थै। 1990-2020 के दौरान डेटा के आधार पर बीओबी पर मानसून के बाद के मौसम के दौरान सीएस के लिए सामान्य 1.00 × 104 नॉट 2 और 0.40 × 106 नॉट 3।

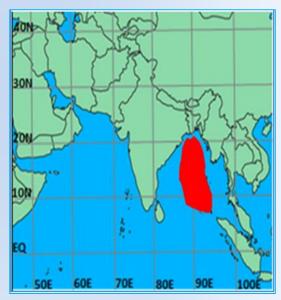
3. चक्रवाती तूफान सितारंग की निगरानी

भारत मौसम विज्ञान विभाग (आईएमडी) ने उत्तर हिंद महासागर पर चौबीसों घंटे निगरानी रखी और चक्रवात की निगरानी 6 अक्टूबर से की गई, लगभग 11 दिन पहले 17 अक्टूबर को पूर्व-मध्य बीओबी और उससे सटे उत्तरी अंडमान सागर पर चक्रवाती परिसंचरण के गठन से 14 दिन पहले। 20 अक्टूबर को उत्तरी अंडमान सागर के ऊपर निम्न दबाव क्षेत्र का निर्माण और 22 अक्टूबर को वास्तविक उत्पत्ति (अवसाद का निर्माण) से 16 दिन पहले। सिस्टम के बारे में जानकारी पहली बार 6 अक्टूबर को आईएमडी द्वारा जारी साप्ताहिक विस्तारित रेंज आउटलुक में जारी की गई थी। चक्रवात की निगरानी INSAT 3D और 3DR से उपलब्ध उपग्रह अवलोकनों, ध्रवीय परिक्रमा करने वाले उपग्रहों और क्षेत्र में उपलब्ध जहाजों और बोया अवलोकनों की मदद से की गई थी। भूस्खलन के दिन प्रणाली की निगरानी के लिए बांग्लादेश मौसम विज्ञान विभाग की टिप्पणियों का उपयोग किया गया था। आईएमडी, आईआईटीएम एनसीएमआरडब्ल्यूएफ, आईएनसीओआईएस सहित पृथ्वी विज्ञान मंत्रालय (एमओईएस) संस्थानों द्वारा संचालित विभिन्न वैश्विक मॉडल और गतिशील-सांख्यिकीय मॉडल का उपयोग चक्रवात की उत्पत्ति, ट्रैक, लैंडफॉल और तीव्रता के साथ-साथ संबंधित गंभीर मौसम की भविष्यवाणी करने के लिए किया गया था। आईएमडी की एक डिजीटल पूर्वान्मान प्रणाली का उपयोग विभिन्न संख्यात्मक मौसम भविष्यवाणी मॉडल मार्गदर्शन, निर्णय लेने की प्रक्रिया और चेतावनी उत्पाद निर्माण के विश्लेषण और त्लना के लिए किया गया था। INSAT 3D (R) और उन्नत स्कैटरोमीटर (ASCAT) पर आधारित सम्द्री सतह की हवा की विशिष्ट उपग्रह आधारित छवियां चित्र में प्रस्तुत की गई हैं।

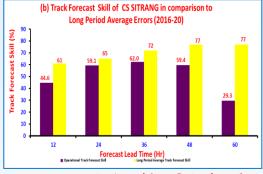
24 अक्टूबर के 1300 यूटीसी पर विशिष्ट इनसैट 3डी (आर) इमेजरी

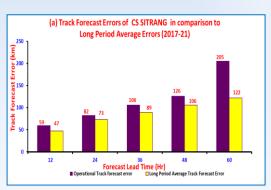
23 अक्टूबर को 1541 यूटीसी पर विशिष्ट स्कैटरोमीटर हवाएं 35 नॉट के एमएसडब्ल्यू को दर्शाती हैं और 24 अक्टूबर को 0431 यूटीसी सिस्टम के साथ मिलकर 45 नॉट के एमएसडब्ल्यू को दर्शाती हैं।

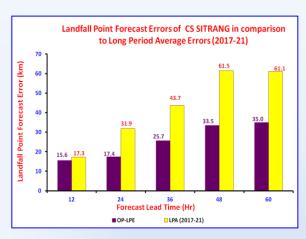
पूर्वान्मान प्रदर्शन

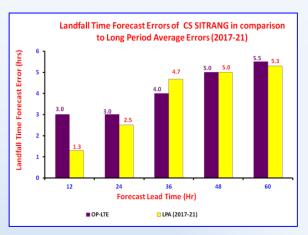

(i) उत्पत्ति पूर्वानुमान

- 14-20 अक्टूबर सप्ताह के दौरान पूर्व-मध्य और निकटवर्ती उत्तरी अंडमान सागर पर चक्रवाती परिसंचरण के संभावित गठन के बारे में पहली जानकारी, इसके अवसाद (साइक्लोजेनेसिस) में तीव्र होने की कम संभावना (1-33%) के साथ जारी किए गए विस्तारित रेंज आउटलुक में जारी की गई थी। 6 अक्टूबर को आई.एम.डी.
- इसके बाद 20 तारीख के आसपास निम्न दबाव क्षेत्र के बनने की संभावना और 21-27 अक्टूबर सप्ताह की शुरुआत के दौरान मध्यम आत्मविश्वास (34-67%) के साथ इसके अवसाद (साइक्लोजेनेसिस) में तीव्र होने की जानकारी 13 अक्टूबर को जारी विस्तारित रेंज आउटलुक में दी गई थी।

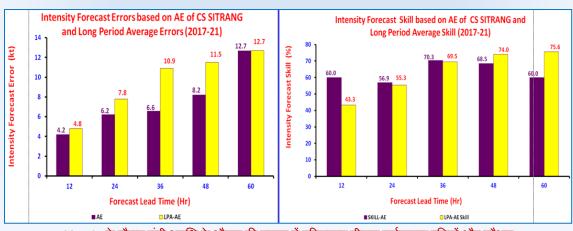

- इसके अलावा 20 अक्टूबर को जारी विस्तारित रेंज आउटलुक में, यह उच्च विश्वास (68-100%) के साथ संकेत दिया गया था कि 22 अक्टूबर के आसपास पूर्वमध्य और आसपास के दक्षिणपूर्व बीओबी पर एक अवसाद बनेगा, जो पश्चिममध्य और निकटवर्ती पूर्वमध्य बीओबी पर एक चक्रवाती तूफान में बदल जाएगा। 24 अक्टूबर. यह भी संकेत दिया गया था कि सिस्टम उत्तर-उत्तर-पूर्व की ओर पुनः वक्रता प्रदर्शित करेगा और 25 अक्टूबर तक पश्चिम बंगाल-बंग्लादेश तटों के पास पहुंच जाएगा (बांग्लादेश पर भूस्खलन से लगभग 102 घंटे पहले)।
- 15 अक्टूबर को 18 को साइक्लोनिक सर्कुलेशन बनने और 20 को इसके प्रभाव से कम दबाव का क्षेत्र बनने की भविष्यवाणी की गई थी।
- 19 अक्टूबर को 0700 यूटीसी पर जारी दैनिक उष्णकिट बंधीय मौसम दृष्टिकोण ने उत्तरी अंडमान सागर और पड़ोस पर चक्रवाती परिसंचरण के गठन का संकेत दिया। इसमें आगे कहा गया है कि इसके प्रभाव से, 20 तारीख को दक्षिण-पूर्व और निकटवर्ती पूर्व-मध्य BoB पर एक कम दबाव का क्षेत्र बनेगा, जो 22 तारीख की सुबह तक केंद्रीय BoB पर एक अवसाद में बदल जाएगा और उसके बाद के 48 घंटों के दौरान पश्चिम-मध्य BoB पर एक चक्रवाती तूफान में बदल जाएगा। दरअसल, 20 तारीख को कम दबाव का क्षेत्र बना था, जो 22 तारीख की सुबह डिप्रेशन और 23 तारीख की शाम को चक्रवाती तूफान बन गया.
- (ii) परिचालन ट्रैक, तीव्रता और भूस्खलन पूर्वानुमान प्रदर्शन


परिचालन ट्रैक, तीव्रता और भूस्खलन बिंदु और समय पूर्वानुमान त्रुटियां नीचे दिए गए आंकड़ों में प्रस्तुत की गई हैं:



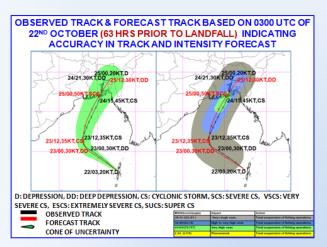

विस्तारित रेंज आउटलुक 13 अक्टूबर (22 अक्टूबर को डिप्रेशन बनने से 9 दिन पहले) और 20 अक्टूबर (लैंडफॉल से लगभग 4 दिन पहले बांग्लादेश की ओर उच्च आत्मविश्वास के साथ आंदोलन का संकेत) जारी किया गया था।

2017-21 के दौरान लंबी अवधि के औसत की तुलना में परिचालन ट्रैक पूर्वानुमान बुटियां और कौशल


परिचालन लैंडफॉल बिंदु और समय पूर्वानुमान त्रुटियों और कौशल की तुलना में 2017-21 के दौरान लंबी अविध का औसत

24, 48 और 60 घंटे की लीड अविध के लिए ट्रैक पूर्वानुमान त्रुटियां क्रमशः 82, 126 और 205 किमी थीं, जबिक लंबी अविध की औसत (एलपीए) त्रुटियां (2017-21) क्रमशः 73, 106 और 122 किमी थीं। 48 और 60 घंटों के लिए ट्रैक पूर्वानुमान में अपेक्षाकृत अधिक त्रुटि मुख्य रूप से 24 अक्टूबर की शाम और रात के दौरान चक्रवात केंद्र के पश्चिम में पश्चिमी ट्रफ के प्रभाव में चक्रवात की तेज गित के कारण थी और यह तथ्य भी था कि सीतारंग ने पीछा किया था एक प्नरावर्ती ट्रैक.

• 24, 48 और 60 घंटे की लीड अविध के लिए लैंडफॉल बिंदु पूर्वानुमान त्रुटियां क्रमशः 17.4, 33.5, 35.0 किमी थीं, जबिक 2017-21 के दौरान एलपीए त्रुटियां (2017-21) क्रमशः 31.9, 61.5 और 61.1 किमी थीं। 21 अक्टूबर के 0300 यूटीसी (लैंडफॉल से लगभग 3.5 दिन पहले) पर जारी पूर्व-उत्पित पूर्वानुमान ने 84 घंटे की लीड अविध के लिए लगभग 120 किमी की एलपीए त्रुटि के मुकाबले लगभग 82.5 किमी की त्रुटि


के साथ बांग्लादेश तट पर भूस्खलन का संकेत दिया। हालाँकि, यह एक पुनरावर्ती ट्रैक था, सभी लीड अवधि के लिए लैंडफॉल बिंदु त्रुटियाँ एलपीए त्रुटियों से काफी कम थीं।

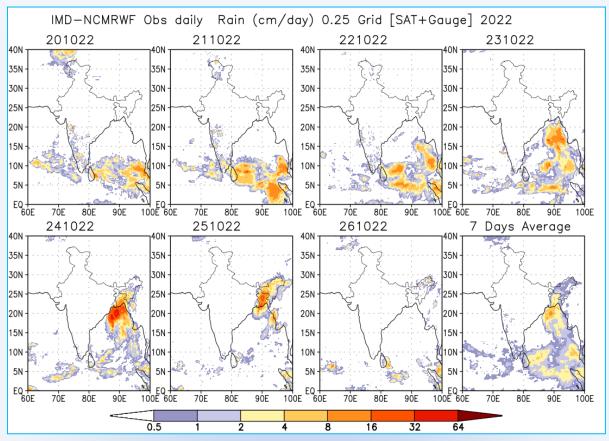
- 24, 48 और 60 घंटे की लीड अवधि के लिए लैंडफॉल समय पूर्वानुमान त्रुटियां क्रमशः 3.0, 5.0 और 5.5 घंटे थीं, जबिक 2017-21 के दौरान क्रमशः 2.5, 5.0 और 5.3 घंटे की एलपीए त्रुटियां (2017-21) थीं। सभी लीड अवधियों के लिए, लैंडफॉल समय की त्रुटियां एलपीए त्रुटियों के बराबर थीं।
- 24, 48 और 60 घंटे की लीड अविध के लिए तीव्रता (हवा) पूर्वानुमान की पूर्ण त्रुटि (एई) क्रमशः 2017-21 के दौरान 7.8, 11.5 और 12.7 समुद्री मील की एलपीए त्रुटियों के मुकाबले 6.2, 8.2 और 12.7 समुद्री मील थी। तीव्रता पूर्वानुमान में त्रुटि सभी लीड अविधयों के लिए एलपीए त्रुटियों से काफी कम थी।

2017-21 के दौरान लंबी अवधि के औसत की त्लना में परिचालन तीव्रता पूर्वान्मान त्रृटियों और कौशल

• अवसाद के गठन (लैंडफॉल से 63 घंटे पहले) पर 22 अक्टूबर के 0830 बजे आईएसटी/0300 यूटीसी पर आधारित विशिष्ट अवलोकन और पूर्वानुमान ट्रैक, पूर्वानुमान में सटीकता का प्रदर्शन चित्र में प्रस्तुत किया गया है।

अवलोकन और पूर्वानुमान ट्रैक 22 अक्टूबर को 0830 बजे IST पर जारी किया गया (लैंडफॉल से 63 घंटे पहले)

(iii) गंभीर मौसम का पूर्वान्मान और एहसास:


(ए) भारी वर्षा

- 24 तारीख को ओडिशा के तटीय जिलों (पुरी, जगतिसंहपुर, केंद्रपाड़ा जिले) में अलग-अलग भारी बारिश और 25 तारीख को तटीय जिलों (बालासोर और भद्रक जिले) में अलग-अलग भारी बारिश की चेतावनी 21 तारीख को जारी की गई थी। 24 तारीख की सुबह इसे संशोधित किया गया और उपरोक्त क्षेत्रों में केवल हल्की से मध्यम वर्षा का पूर्वानुमान लगाया गया।
- 24 तारीख को छिटपुट भारी वर्षा और 21 तारीख को पश्चिम बंगाल के तटीय जिलों (दक्षिण और उत्तर 24 परगना, पूर्वी मेदिनीपुर) में छिटपुट भारी से बहुत भारी वर्षा की चेतावनी जारी की गई थी।
- 24 तारीख को असम, मेघालय, नागालैंड, मणिपुर, मिजोरम, त्रिपुरा में छिटपुट भारी वर्षा और 25 तारीख को इन क्षेत्रों में छिटपुट भारी से बहुत भारी वर्षा की चेतावनी जारी की गई थी। आगे के अपडेट 25 अक्टूबर तक नियमित रूप से प्रदान किए गए।

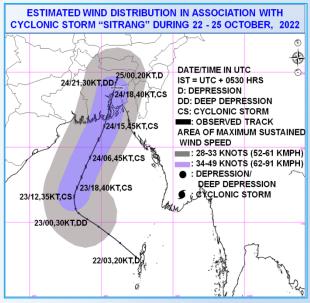
25 अक्टूबर, 2022 को 0830 IST पर समाप्त होने वाले पिछले 24 घंटों के दौरान वास्तविक वर्षा हुई। ओडिशा में अलग-अलग स्थानों पर और तटीय पश्चिम बंगाल में कुछ स्थानों पर हल्की से मध्यम वर्षा हुई। मेघालय में अलग-अलग स्थानों पर अत्यधिक भारी वर्षा के साथ अधिकांश स्थानों पर वर्षा हुई; अरुणाचल प्रदेश में अलग-अलग स्थानों पर भारी से बहुत भारी वर्षा होगी और असम तथा मणिपुर में अलग-अलग स्थानों पर भारी वर्षा होगी।

25 अक्टूबर को 0830 बजे IST पर समाप्त होने वाली 24 घंटे की भारी वर्षा (≥7 सेमी) नीचे दी गई है:

- (i) मेघालय: मावफलांग (जिला पूर्वी खासी हिल्स) 25, पिनुरस्ला (जिला पूर्वी खासी हिल्स) 25, विलियमनगर (जिला पूर्वी गारो हिल्स) 23, शोरा (जिला पूर्वी गारो हिल्स) 22, सिचवालय_हिल्स (एआरजी) (जिला पूर्वी गारो हिल्स) 21, शिलांग (एडब्ल्यूएस) (जिला पूर्वी खासी हिल्स) 21, शिलांग सी.एस.ओ. (जिला पूर्वी खासी हिल्स) 20, माविकरवाट (एआरजी) (जिला दक्षिण पश्चिम खासी हिल्स) 18, बारापानी (जिला रिभोई) 18, नोंगस्टोइन (जिला पश्चिम खासी हिल्स) 13, खलीहरियाट (जिला पूर्वी जैंतिया हिल्स) 12, बाघमारा (जिला दक्षिण) गारो हिल्स) 10;
- (ii) अरुणाचल प्रदेश: बोमडिला (जिला पश्चिम कामेंग) 12, कलाक्तांग (जिला पश्चिम कामेंग) 10, किबिथु (जिला अंजॉ) 9, बसर (जिला पश्चिम सियांग) 8, जीरो (जिला निचला सुबनिसरी) 8, कोलोरियांग (जिला कुरुंग कुमेय) 7, जंग_एआरजी (जिला तवांग) 7, काबू बस्ती (जिला पश्चिम सियांग) 7, पॉलिन (एआरजी) (जिला क्रा दड्डी) 7;
- (iii) असम : खानापारा (जिला कामरूप मेट्रोपॉलिटन) 10, दुधनोई केवीके (एडब्ल्यूएस) (जिला गोलपाड़ा) 9, खेतड़ी (एआरजी) और चांदमारी (जिला कामरूप मेट्रोपॉलिटन) 9, डीआरएफ और गोइबारगांव (जिला बक्सा) 8, पांडु, नोंगपोह (जिला रिभोई) 8, गोइबरगांव (जिला बक्सा) 8, उदयपुर (जिला तिनसुकिया) 8, उमरांगशु (एआरजी) (जिला पश्चिम कार्बी आंगलोंग) 7, मोटुंगा (जिला तामुलपुर) 7, नलबाड़ी (जिला नलबाड़ी) 7, तामुलपुर (जिला बक्सा) 7, चंद्रपुर एआरजी (जिला कामरूप (ग्रामीण) 7, खेरोनीघाट (जिला कार्बी आंगलोंग) 7, गुवाहाटी [जिला कामरूप (एम)] 7।
- (iii) मिणपुर: उखरुल (जिला उखरुल) 10, उखरुल एडब्ल्यूएस (जिला उखरुल) 9, चुराचांदपुर (जिला चुराचांदपुर) 7, सेनापति (जिला सेनापति) 7; 22-25 अक्टूबर के दौरान एमओईएस दवारा तैयार उपग्रह और रेनगेज आधारित मर्ज किए गए

एमओईएस सैटेलाइट गेज में 20-26 अक्टूबर, 2022 के दौरान 0300 यूटीसी पर समाप्त होने वाली वर्षा शामिल है

डेटासेट के आधार पर वर्षा का स्थानिक वितरण चित्र में दिखाया गया है।


(बी) हवा

24 की शाम से 25 की सुबह तक बांग्लादेश तट के पास और उसके आसपास 90-100 से 110 किमी प्रति घंटे की अधिकतम निरंतर हवा की गति और 24 परगना जिलों में 80-90 किमी प्रति घंटे से लेकर 100 किमी प्रति घंटे की रफ्तार और 60-70 से 80 किमी प्रति घंटे की रफ्तार की भविष्यवाणी की गई थी। पश्चिम बंगाल तट के पूर्वी मेदिनीपुर जिले के साथ-साथ और बालासोर जिले के आसपास 50-60 किमी प्रति घंटे से लेकर 70 किमी प्रति घंटे की रफ्तार तक और उत्तरी तटीय ओडिशा के शेष जिलों और मिजोरम और त्रिपुरा में 45-55 से 65 किमी प्रति घंटे की रफ्तार तक चलने की भविष्यवाणी की गई थी। 22 तारीख को 1300 बजे। ST पर बुलेटिन जारी किया गया।

• इसे 24 परगना जिलों के साथ-साथ 70-90 किमी प्रति घंटे से लेकर 100 किमी प्रति घंटे तक और पश्चिम बंगाल तट के पूर्वी मेदिनीप्र जिले के साथ-साथ 60-70 किमी प्रति घंटे से लेकर 80 किमी प्रति घंटे तक और बालासोर जिले के साथ-साथ 45-55 किमी प्रति घंटे से 65 किमी प्रति घंटे तक संशोधित किया गया। 23 तारीख को 1220 बजे IST पर जारी बुलेटिन में उत्तरी तटीय ओडिशा के शेष जिलों और मिजोरम और त्रिपुरा में 40-50 से लेकर 60 किमी प्रति घंटे की रफ्तार की भविष्यवाणी की गई थी।

• इसे बालासोर जिले के साथ-साथ 40-50 किमी प्रति घंटे से 60 किमी प्रति घंटे तक और उत्तरी तटीय ओडिशा के शेष जिलों में 35-45 से 55 किमी प्रति घंटे तक और त्रिपुरा में 50-60 किमी प्रति घंटे से 70 किमी प्रति घंटे तक 45-55 किमी प्रति घंटे तक संशोधित किया गया। 24 तारीख को 1200 बजे IST पर जारी बुलेटिन में मिजोरम, दक्षिण असम और पूर्वी मेघालय और मणिपुर के आसपास के इलाकों में 65 किमी प्रति घंटे की गति की भविष्यवाणी की गई थी।

भूस्खलन के दौरान बांग्लादेश तट पर और उसके बाहर 80-90 किमी प्रति घंटे से लेकर 100 किमी प्रति घंटे की तीव्रता वाली अनुमानित अधिकतम निरंतर हवा (एमएसडब्ल्यू) की गति चली। भूस्खलन के समय 60-70 किमी प्रति घंटे की तीव्रता वाली एमएसडब्ल्यू, जो 80 किमी प्रति घंटे की रफ्तार तक पहुंच गई, सुंदरबन वन क्षेत्र सहित उत्तर और दक्षिण 24 परगना के आसपास व्याप्त हो गई। कोलकाता ने 24 अक्टूबर को 1647 IST पर 44 किमी प्रति घंटे की एमएसडब्ल्यू की सूचना दी। त्रिपुरा में 50-60 किमी प्रति घंटे से लेकर 70 किमी प्रति घंटे की रफ्तार तक एमएसडब्ल्यू और मेघालय, दक्षिण असम और निकटवर्ती मिजोरम और उत्तरी ओडिशा तट के पास 40-50 किमी प्रति घंटे से लेकर 60 किमी प्रति घंटे तक की रफ्तार चल रही है। सिस्टम के साथ अनुमानित पवन वितरण चित्र में दिया गया है।

चक्रवाती तूफान सितारंग के सहयोग से अनुमानित अधिकतम निरंतर हवा की गति वितरण

चेतावनियाँ और सलाह जारी की गईं

- पश्चिम-मध्य बीओबी पर चक्रवाती तूफान के विकास को ध्यान में रखते हुए, आईएमडी ने उत्तरी अंडमान सागर और पड़ोस के ऊपर कम दबाव का क्षेत्र बनने पर 20 अक्टूबर को 1400 बजे IST पर पहला विशेष संदेश और प्रेस विज्ञप्ति जारी की। यह भी संकेत दिया गया था कि यह प्रणाली क्रमशः 22 और 24 अक्टूबर तक एक अवसाद और चक्रवाती तूफान में बदल जाएगी। सिस्टम के पश्चिम बंगाल-बांग्लादेश तटों की ओर बढ़ने की भी भविष्यवाणी की गई थी।
- अगले 5 दिनों तक सिस्टम सेंटर के आसपास पूर्वानुमान ट्रैक, तीव्रता और हवा वितरण के साथ विशेष संदेश और प्रेस विज्ञप्ति को 21 अक्टूबर को अपडेट किया गया। यह भी संकेत दिया गया था कि यह सिस्टम बांग्लादेश के तट को पार करेगा

और बांग्लादेश और उससे सटे पश्चिम बंगाल के तट तूफान से सबसे ज्यादा प्रभावित होंगे। इस प्रकार, 90-100 किमी प्रति घंटे से लेकर 110 किमी प्रति घंटे की रफ्तार वाली हवा की गति के साथ चक्रवात के भूस्खलन की भविष्यवाणी आईएमडी द्वारा की गई थी जब सिस्टम अंडमान सागर के ऊपर कम दबाव का क्षेत्र था और चक्रवात के लैंडफॉल समय से साढ़े तीन दिन पहले था।

- पश्चिम बंगाल तट के लिए चक्रवात पूर्व निगरानी 22 अक्टूबर को 1300 बजे IST पर जारी की गई थी, जिसमें दक्षिण-पूर्व और निकटवर्ती पूर्व-मध्य बीओबी पर अवसाद का निर्माण हुआ था (बांग्लादेश तट पर सीतारंग के भूस्खलन से लगभग 60 घंटे पहले)।
- पश्चिम बंगाल तट के लिए चक्रवात की चेतावनी 23 तारीख को 0900 बजे IST (सितारंग के भूस्खलन से लगभग 40 घंटे पहले) पूर्वमध्य बीओबी पर गहरे दबाव में अवसाद के तीव्र होने के साथ जारी की गई थी।

इसे पश्चिम बंगाल तट के लिए चक्रवात चेतावनी के रूप में उन्नत किया गया था और 24 अक्टूबर को 0230 बजे IST (सीतारंग के भूस्खलन से लगभग 20 घंटे पहले) जारी किया गया था।

राष्ट्रीय और राज्य स्तर के आपदा प्रबंधकों के लिए 2 विशेष संदेश, प्रिंट और इलेक्ट्रॉनिक मीडिया के लिए 6 प्रेस विज्ञप्ति, उच्च स्तरीय आपदा प्रबंधन अधिकारियों के लिए आईएमडी के महानिदेशक के 3 विशेष संदेश, 23 उष्णकटिबंधीय चक्रवात सलाह और विशेष उष्णकटिबंधीय मौसम सहित कुल 23 राष्ट्रीय बुलेटिन। बांग्लादेश और म्यांमार सहित WMO/ESCAP पैनल के सदस्य देशों के लिए दृष्टिकोण, अंतर्राष्ट्रीय नागरिक उड्डयन के लिए 9 उष्णकटिबंधीय चक्रवात सलाह, वैश्विक सम्द्री संकट स्रक्षा प्रणाली के तहत सम्द्री क्षेत्र के लिए 11 सलाह, अपतटीय/तटवर्ती ऑपरेटरों के लिए 17 अन्कूलित स्थान विशिष्ट ब्लेटिन, दैनिक वीडियो अपडेट, नियमित आईएमडी मुख्यालय द्वारा सोशल मीडिया (फेसब्क, व्हाट्सएप, ट्विटर) पर अपडेट, आपदा प्रबंधकों, आम जनता, मछ्आरों और किसानों को एसएमएस जारी किए गए, साथ ही आंध्र प्रदेश, ओडिशा, पश्चिम बंगाल और अंडमान और निकोबार द्वीप समूह में राज्य स्तरीय कार्यालयों द्वारा भी इसी तरह की कार्रवाई की गई। मछुआरों के लिए INCOIST इस प्रणाली के सहयोग से व्हाट्सएप के माध्यम से बांग्लादेश और म्यांमार को भी नियमित संदेश भेजे गए।

4.6. एफडीपी स्टॉर्म प्रोजेक्ट - 2022

तूफान पूर्वानुमान प्रदर्शन परियोजना-2022

STORM कार्यक्रम की कल्पना एक बहु-विषयक राष्ट्रीय स्तर पर समन्वित अनुसंधान और विकास कार्यक्रम के रूप में की गई थी और इसे बहु-वर्षीय अवलोकन-सह-मॉडलिंग अभियान के रूप में चलाया गया है, जिसका उद्देश्य विभिन्न हिस्सों में अत्यधिक हानिकारक गंभीर तूफानों के लिए उचित परिचालन प्रारंभिक चेतावनी प्रणाली का निर्माण करना है। भारत। गंभीर तूफान, ओलावृष्टि, तूफान और अन्य संबंधित घटनाओं के पूर्वानुमान की सटीकता में सुधार के लिए तरीके विकसित करने के लिए, भारत मौसम विज्ञान विभाग हर साल मार्च से जून के दौरान तूफान पूर्वानुमान प्रदर्शन परियोजना (एफडीपी तूफान) के तहत पूरे देश में क्षेत्रीय प्रयोग करता है। यह कार्यक्रम 2017 से पहले SAARC STORM प्रोजेक्ट के रूप में चलाया गया था।

प्रत्येक एफडीपी कार्यक्रम के अंत में, एक वार्षिक STORM रिपोर्ट संकलित और प्रकाशित की जाती है। इसमें देखी गई महत्वपूर्ण मौसम घटनाओं का क्षेत्रवार विस्तृत विश्लेषण, केस अध्ययन, एफडीपी के दौरान जारी गहन अवलोकन अविध (आईओपी) का सत्यापन, साथ ही पूरे सीज़न में चौबीसों घंटे जारी किए गए 3 घंटे के नाउकास्ट का सत्यापन शामिल है।

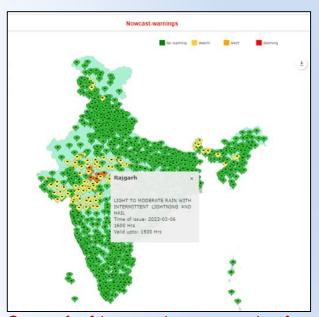
इस वर्ष भी STORM फ़ील्ड्स प्रयोगों ने पूरे भारत को कवर किया। निगरानी अवधि 1 मार्च से 30 जून, 2022 तक पूरे देश के लिए एक समान थी।

इस परियोजना के तहत, एफडीपी बुलेटिन दैनिक आधार पर जारी किए जाते थे और यदि आवश्यक हो तो शाम को अद्यतन किया जाता था। एफडीपी बुलेटिन में चार खंड होते हैं:

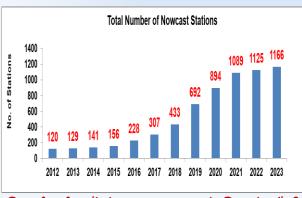
- (i) भारत पर वर्तमान सिनोप्टिक स्थितियाँ और उपग्रह वर्तमान और पिछले 24 घंटों के अवलोकन,
- (ii) आईएमडी जीएफएस, आईएमडी डब्ल्यूआरएफ और एनसीयूएम (एनसीएमआरडब्ल्यूएफ) मॉडल से एनडब्ल्यूपी मॉडल मार्गदर्शन,
- (iii) पिछले 24 घंटों की रडार और वास्तविक तूफान रिपोर्ट और
- (iv) मौसम संबंधी उपखंड और दिन के मौसम के सारांश के लिए अगले 24 घंटों और 24-48 घंटों के दौरान आंधी और

बारिश की घटनाओं के लिए गहन अवलोकन अवधि (आईओपी)।

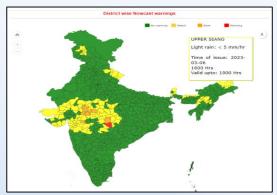
STORM अवधि-2022 के दौरान कुल 122 FDP बुलेटिन जारी किए गए।


नाउकास्ट मार्गदर्शन ब्लेटिन

मार्च से जून - 2022 के दौरान एफडीपी बुलेटिन के अलावा, नाउकास्ट गाइडेंस बुलेटिन में वर्तमान सिनोप्टिक विशेषताएं शामिल हैं और अगले 24 घंटों के लिए गंभीर मौसम (भारी बारिश / तूफान और संबंधित घटना / कोहरा) के संभावित क्षेत्रों को पाठ के साथ-साथ दृश्य रूप में दर्शाया गया है। 0830 IST अवलोकन पूरे वर्ष में दिन में एक बार जारी किए गए (यदि आवश्यक हो तो दोपहर में अद्यतन किए गए)। ये बुलेटिन विभिन्न आरएमसी/एमसी में काम करने वाले पूर्वानुमानकर्ताओं को मार्गदर्शन बुलेटिन में उल्लिखित जिम्मेदारी के क्षेत्रों पर नजर रखने और तदनुसार नाउकास्ट बुलेटिन जारी करने के लिए महत्वपूर्ण मार्गदर्शन प्रदान करते हैं।

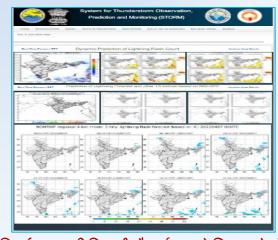

स्थान विशिष्ट तीन घंटे का थंडरस्टॉर्म (टीएस) नाउकास्ट

37 डॉपलर मौसम राडार के नेटवर्क से 10 मिनट के अंतराल पर (i) डिजिटल और छवि जानकारी की शुरुआत के कारण निगरानी और पूर्वानुमान में हाल के सुधार से गंभीर मौसम (तूफान, तूफान और ओलावृष्टि, भारी वर्षा आदि) की नाउकास्टिंग से लाभ हुआ है। (ii) रैपिड सैटेलाइट इमेजरी से आधे घंटे का उपग्रह अवलोकन, (iii) सघन स्वचालित मौसम स्टेशन (एडब्ल्यूएस) नेटवर्क (iv) फोरकास्टर के कार्य केंद्र पर तालमेल प्रणाली में बेहतर विश्लेषण उपकरण, (v) ग्राउंड आधारित लाइटनिंग नेटवर्क (vi) मेसोस्केल मॉडल की उपलब्धता और (vii) कम्प्यूटेशनल और संचार क्षमताएं।


प्रमुख शहरों के टीएस नाउकास्ट को संबंधित आरएमसी/एमसी/आरडब्ल्यूएफसी द्वारा सिनोप्टिक डेटा, मॉडल आउटपुट, सैटेलाइट उत्पादों और अंततः विभिन्न रडार आउटपुट का उपयोग करके हर 3 घंटे के अंतराल पर अपलोड किया जाता है, जिनके अधिकार क्षेत्र में ये स्टेशन स्थित हैं। वर्ष-2022 के दौरान, तीन घंटे के तूफान वाले नाउकास्ट जारी करने के लिए आईएमडी वेबसाइट के ऑल इंडिया नाउकास्ट वार्निंग पेज पर 36 नए स्टेशन जोड़े गए, जिससे 25 नाउकास्ट केंद्रों (आरएमसी/आरडब्ल्यूएफसी) के तहत नाउकास्ट स्टेशनों की क्ल संख्या बढ़कर 1166 (आज तक) हो गई। (एमसी/सीडब्ल्यूसी). चित्र (ए) आईएमडी वेबसाइट पर नाउकास्ट चेतावनी पृष्ठ के स्क्रीन शॉट को दर्शाता है और चित्र (बी) तीन घंटे के तूफान नाउकास्ट के लिए नाउकास्ट चेतावनी पृष्ठ पर जोड़े गए स्टेशनों की वर्ष-वार संचयी संख्या को दर्शाता है। स्टेशनवार नाउकास्टिंग के अलावा, जिला स्तरीय नाउकास्टिंग जो जुलाई, 2019 में शुरू हुई थी, भारत के सभी 732 जिलों के लिए भी जारी की गई थी [चित्र। (सी)]। गंभीर मौसम की वर्तमान स्थिति के लिए डीडब्ल्यूआर और उपग्रह आधारित जानकारी के महत्व और विश्वसनीयता को ध्यान में रखते हुए, भारत में सभी जिला मुख्यालयों/प्रमुख कस्बों/पर्यटन स्थलों और राजधानी शहरों के भीतर विशिष्ट स्थानों (शहरी मौसम विज्ञान और जलवायु परियोजना के तहत) को गंभीर मौसम की वर्तमान स्थिति के लिए शामिल किया जाना है।

चित्र(ए). आईएमडी वेबसाइट पर स्टेशनवार नाउकास्ट चेतावनी पृष्ठ लिंक:https://mausam.imd.gov.in/imd_latest/contents/statio nvoice-nowcast-warning.php

चित्र (बी). तीन घंटे के तूफान नाउकास्ट के लिए स्टेशनों की वर्ष-वार संचयी संख्या


चित्र (सी). आईएमडी वेबसाइट पर जिलेवार नाउकास्ट चेतावनी वेब पेज

নিক:https://mausam.imd.gov.in/imd_latest/contents/distric twisewarnings.php

बिजली, तूफान, धूल भरी आंधी, ओलावृष्टि, तूफान, बारिश और बर्फबारी आदि के लिए मौसम की गंभीरता के आधार पर विभिन्न प्रकार की लगभग उन्नीस श्रेणियों (छवि डी) के लिए स्टेशनवार और जिलावार नाउकास्ट जारी किया जाता है। यह नाउकास्ट चेतावनी पृष्ठ यहां उपलब्ध है। नई और पुरानी आईएमडी वेबसाइटें। इसके अलावा तूफान के पूर्वानुमान से संबंधित अन्य सभी उत्पाद 2019 में विकसित समर्पित तूफान वेब पेज पर उपलब्ध हैं (चित्र ई)।

चित्र (डी). नाउकास्ट चेतावनियों की विभिन्न श्रेणियां

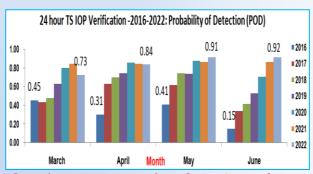
चित्र(ई). तूफ़ान की निगरानी और पूर्वानुमान के लिए नया वेब पेज लिंक:https://srf.tropmet.res.in/srf/ts_prediction_system/ind ex.php

Category/Wind Speed	Structures	Communic ation & Power	Agriculture	Suggested Actions
Light Thunderstorm <41 kmph (21 knots)	Nil	Nil	Nil	Nil
Moderate Thunderstorms 41 – 61 kmph (22-33 knots)	Minor damage to loose / unsecured structures	Nil	Minor damage to Banana trees. Damage to ripe paddy crops.	People are advised to keep a watch on the weather for worsening conditions and be ready to move to safer places accordingly.
Severe Thunderstoms 62 -87 kmph (34 -47 knots)	Damage to thatched huts.	Minor damage to power and communica tion lines due to breaking of branches.	Some damage to paddy crops, banana, papaya trees and orchards and Standing crops.	People are advised to take shelter in pukka structures and avoid taking shelter undertrees. Farming operations to be temporarily suspended during occurrence of event. Also move away from electric poles and wires.
Very Severe Thunderstoms Greater than 87 kmph {(47Kt) in gusts/squall}	Major damage to thatched houses/huts. Rooftops may blow off. Unattached metal sheets may fly.	Minor damage to power and communica tion lines.	Breaking of tree branches, uprooting of large avenue trees. Moderate damage to banana and papaya trees. Large dead limbs blown from trees. Damage to Standing crops.	People are advised to stay away from weak walls and structures and take shelter in pukka structures. People in affected areas to remain indoors and avoid water bodies and flying projecties. Farming operations to be temporarily suspended during occurrence of event.
Thunderstom associated with Hailstorm	Major damage to Kutcha structures and tin and asbestos roofed houses, cars		The fruit, vegetable and field crops at maturity stages are more prone to damage. Damage to Standing crops.	People are advised to stay away from weak walls and structures and take shelter in pukka structures. People in affected areas to remain indoors.

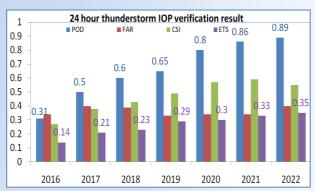
चित्र (एफ). विभिन्न प्रकार की गंभीर मौसम घटनाओं से जुड़े प्रभाव

इसमें सचिव MoES की अध्यक्षता में THUMP परियोजना के तहत IMD, NCMRWF और IITM वैज्ञानिकों द्वारा विकसित उत्पाद शामिल हैं। ये नए उत्पाद, जो आंधी-तूफान से जुड़ी मौसम की घटनाओं का कम दूरी का पूर्वानुमान प्रदान करते हैं, ने भारतीय क्षेत्र में आंधी-तूफान के कम दूरी के पूर्वानुमान को बेहतर बनाने में काफी मदद की है। भारतीय क्षेत्र में तूफान के लिए प्रभाव आधारित पूर्वानुमान प्रदान करने के लिए सभी मौसम विज्ञान केंद्रों द्वारा एक साथ सचेत रूप से जोर दिया गया है। तूफान की विभिन्न श्रेणियों से जुड़े सामान्यीकृत प्रभावों की सूची भी पूर्वानुमान परिपत्र संख्या 1/2019 (चित्र एफ) के माध्यम से प्रकाशित की गई है।

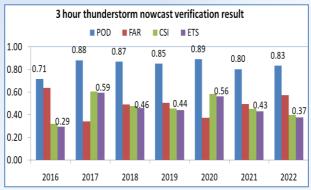
आईओपी/टीएस नाउकास्ट-2022 का सत्यापन


(i) एफडीपी बुलेटिन

FDP STORM-2022 के दौरान 24 घंटों के लिए जारी किए गए तूफान के पूर्वानुमानों को वास्तविक तूफान डेटा के साथ सत्यापित किया गया था। तूफान के पूर्वानुमान के लिए सत्यापन परिणाम तालिका 2 में और रेखांकन चित्र (जी) में दिखाए गए हैं। चित्र (एच) 2016 से 2022 के दौरान 24 घंटे थंडरस्टॉर्म आईओपी के सत्यापन स्कोर को दर्शाता है जो सभी स्कोर में महत्वपूर्ण सुधार दर्शाता है। 2016 से 2022 के दौरान जांच की मासिक संभावना (पीओडी) स्कोर की मासिक तुलनात्मक जांच।

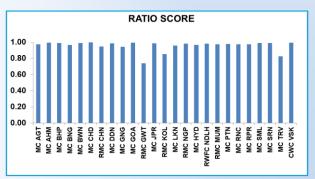

तालिका

एफडीपी स्टॉर्म - 2022 (मार्च से जून) के लिए थंडरस्टॉर्म सत्यापन के लिए कौशल घाव

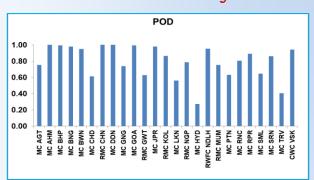

Month	Ratio Score	POD	FAR	CSI	ETS	BIAS
March	0.88	0.73	0.66	0.30	0.25	2.16
April	0.79	0.84	0.37	0.56	0.38	1.32
May	0.71	0.91	0.39	0.58	0.27	1.49
June	0.68	0.92	0.38	0.59	0.22	1.48
FDP-	0.76	0.89	0.40	0.55	0.35	1.48
2022						

चित्र (जी). 2016 से 2022 की अवधि के दौरान मार्च से जून तक अखिल भारतीय पीओडी स्कोर का माहवार विकास

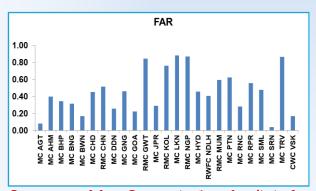
चित्र (एच). 2016 से 2022 के पूरे एफडीपी सीज़न के लिए 24 घंटे तूफान पूर्वानुमान सत्यापन परिणाम

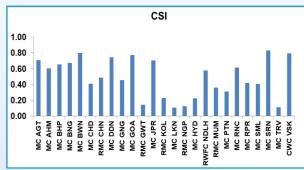


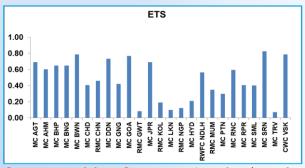
चित्र (i). 2016 से 2022 के पूरे एफडीपी सीज़न के लिए तीन घंटे का तुफान नाउकास्ट सत्यापन परिणाम

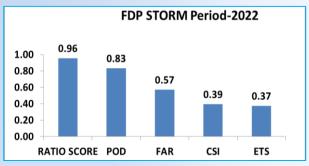

चित्र (i) से पता चलता है कि इस वर्ष सीज़न के सभी महीनों में तूफान का पता पिछले सभी तूफान सीज़न के समान परिणामों की तुलना में अधिक सटीक रूप से लगाया गया था।

(ii) तीन घंटे का टीएस नाउकास्ट

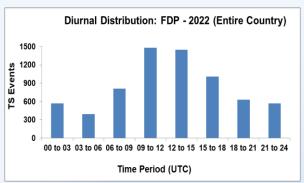

चित्र (जे-एन) वर्ष-2022 के लिए एफडीपी स्टॉर्म (मार्च से जून) के दौरान विभिन्न आरएमसी/एमसी द्वारा जारी किए गए तीन घंटे के टीएस नाउकास्ट के क्रमशः अनुपात स्कोर, एफएआर, पीओडी, सीएसआई और ईटीएस स्कोर को दर्शाता है और चित्र (ओ) इंगित करता है। इसके लिए अखिल भारतीय नाउकास्ट सत्यापन स्कोर।

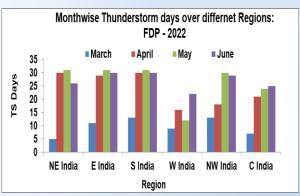

चित्र (जे). एफडीपी स्टॉर्म-2022 के दौरान तीन घंटे के टीएस नाउकास्ट सत्यापन का एमसी-वार अनुपात स्कोर


चित्र (के). एफडीपी अवधि-2022 के दौरान तीन घंटे के टीएस नाउकास्ट सत्यापन की एमसी-वार जांच की संभावना (पीओडी)

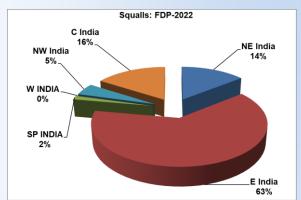

चित्र (एल). एफडीपी अवधि-2022 के दौरान तीन घंटे के टीएस नाउकास्ट सत्यापन का एमसी-वार गलत अलार्म अनुपात (एफएआर)

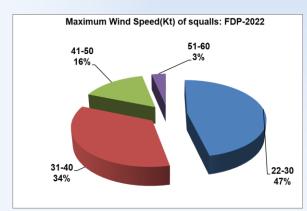
चित्र (एम). एफडीपी अवधि -2022 के दौरान तीन घंटे के टीएस नाउकास्ट सत्यापन का एमसी-वार महत्वपूर्ण सफलता सूचकांक (सीएसआई)

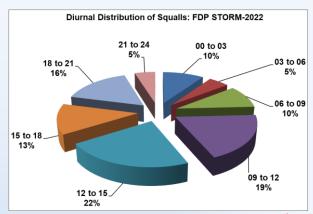

चित्र (एन). एफडीपी अवधि-2022 के दौरान तीन घंटे के टीएस नाउकास्ट सत्यापन के समान खतरा स्कोर (ईटीएस) का एमसी-वार

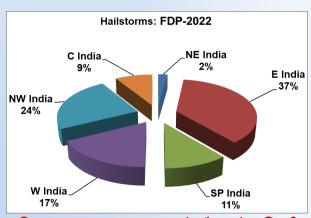

चित्र(ओ). एफडीपी अवधि-2022 के दौरान अखिल भारतीय 3 घंटे का टीएस नाउकास्ट सत्यापन स्कोर

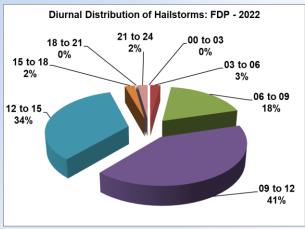
एफडीपी स्टॉर्म रिपोर्ट - 2022


मार्च से जून-2022 के दौरान भारत में देखी गई तूफान गतिविधियों पर आधारित एक विस्तृत तूफान रिपोर्ट दस्तावेज़, नाउकास्ट डिवीजन, एनडब्ल्यूएफसी द्वारा तैयार किया गया था। इसमें दैनिक मौसम की स्थिति, महत्वपूर्ण मौसम चार्ट, अभियान अवधि के दौरान गंभीर मौसम की घटनाओं, मामले के अध्ययन और अवधि के दौरान जारी किए गए बुलेटिनों की जानकारी शामिल है। यह रिपोर्ट 15 जनवरी-2023 को आईएमडी स्थापना दिवस के दौरान प्रकाशित की गई है। चित्र (पी-वी) एफडीपी स्टॉर्म रिपोर्ट-2022 की कुछ मुख्य विशेषताओं का प्रतिनिधित्व करता है।


चित्र (पी). एफडीपी स्टॉर्म-2022 के दौरान देश भर में टीएस कार्यक्रमों का दैनिक वितरण

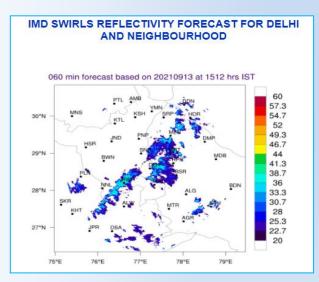

चित्र (क्यू). FDP STORM-2022 के दौरान भारत के विभिन्न क्षेत्रों में टीएस दिनों का मासिक वितरण


चित्र (आर). संपूर्ण FDP STORM-2022 के दौरान देश भर में तृफान की घटनाओं का क्षेत्रवार वितरण


चित्र(एस). FDP STORM-2022 के दौरान अधिकतम हवा की गति (Kt) के आधार पर देश भर में तृफ़ान का वितरण

चित्र (टी). FDP STORM-2022 के दौरान वज्रपात का दैनिक (UTC में समय) वितरण

चित्र (यू). FDP STORM-2022 के दौरान ओलावृष्टि की घटनाओं का क्षेत्रवार वितरण

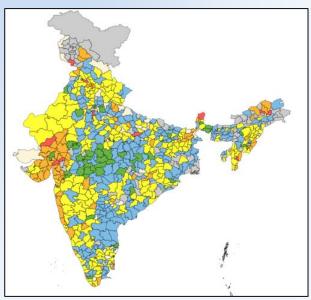


चित्र (वी). संपूर्ण FDP STORM-2022 के दौरान देश भर में ओलावृष्टि की घटनाओं का दैनिक वितरण

स्थानीय प्रणालियों में तीव्र वर्षा तूफ़ान की कम दूरी की चेतावनी (SWIRLS)

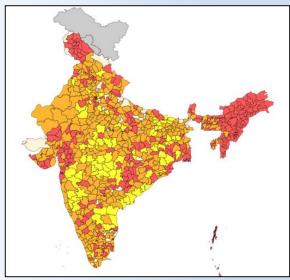
SWIRLS TREC (सहसंबंध द्वारा ट्रैकिंग रडार गूँज) तकनीक का उपयोग करके रडार गूँज के एक्सट्रपलेशन पर आधारित है। रडार परावर्तन मानचित्रों पर पिक्सेल सरणी आकार के उपयुक्त विकल्प के साथ, व्युत्पन्न टीआरईसी वैक्टर का उपयोग मेसोस्केल स्पेक्ट्रम में, व्यक्तिगत संवहन कोशिकाओं से, सुपरसेल और क्लस्टर तक, और रेन बैंड या समूहों के पार प्रतिध्वनि गति की निगरानी और एक्सट्रपलेशन के लिए किया जा सकता है। झंझावत रेखाएँ.

टीआरईसी के आधार पर, स्थानीय क्षेत्र में उच्च रिज़ॉल्यूशन पूर्वानुमान वर्षा वितरण मानचित्र तैयार करने के लिए मात्रात्मक वर्षा पूर्वानुमान (क्यूपीएफ) एल्गोरिदम विकसित किए गए हैं। ये मानचित्र पूर्वानुमानकर्ताओं को विश्लेषण के साथ-साथ अगले 30, 60 और 120 मिनट में संभावित बारिश परिदृश्य का आकलन करने और रेनस्टॉर्म चेतावनी प्रणाली के संचालन में निर्णय लेने की सुविधा प्रदान करने के लिए उपयोगी वस्तुनिष्ठ मार्गदर्शन प्रदान करते हैं। पहला SWIRLS अक्टूबर, 2018 में दिल्ली में स्थापित और चालू किया गया था। वर्तमान में SWIRLS सॉफ्टवेयर दिल्ली में चालू है। चित्र (डब्ल्यू) दिल्ली के लिए आईएमडी भंवर पूर्वानुमान दिखाता है।

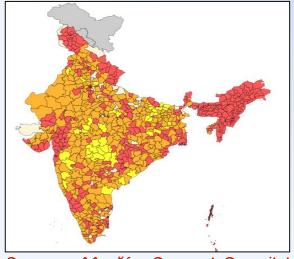

चित्र (डब्ल्यू). घुमाव परावर्तन दिल्ली लिंक: https://nwp.imd.gov.in/swirls.php

नाउकास्ट यूनिट द्वारा की गई नई पहल

(i) जिला नाउकास्ट सत्यापन का स्वचालन


आईएमडी 2018 से भारत के सभी जिलों के लिए चौबीसों घंटे तीन घंटे के अंतराल पर गंभीर मौसम के लिए जिला स्तरीय नाउकास्ट जारी करता है। जिन घटनाओं के लिए नाउकास्ट जारी किए जाते हैं उनमें शामिल हैं: (ए) तूफान और संबंधित मौसम और (बी) वर्षा। ये सभी नाउकास्ट आईएमडी की वेबसाइट (https://mausam.imd.gov.in/imd_latest/

contents/districtwaiwarnings.php) पर हर तीन घंटे में अपडेट किए जाते हैं। जिला स्तरीय नाउकास्ट के सत्यापन के लिए भारतीय उष्णकटिबंधीय मौसम विज्ञान संस्थान और भारतीय वायु सेना के ग्राउंड आधारित लाइटनिंग ऐरे नेटवर्क के डेटा का उपयोग किया गया है। इस नेटवर्क में वर्तमान में 83 सेंसर हैं और यह लगभग 500 मीटर की स्थानिक सटीकता प्रदान करता है। लेट-लॉन्ग निर्देशांक के साथ बिजली के लिए बिंद् डेटा परिचालन उपयोग के लिए 15 मिनट के अंतराल पर आईएमडी को वास्तविक समय मोड में नेटवर्क से प्रदान किया जाता है। ओपन सोर्स "नॉमिनाटिम सर्वर" सॉफ़्टवेयर का उपयोग करके पॉइंट डेटा को जिला स्तर तक जियोलोकेट किया जाता है। सत्यापन उददेश्यों के लिए, प्रत्येक जिले में तुफान की घटना-गैर-घटना के लिए हां-नहीं मानदंड (2x2 कॉन्फ़िगरेशन तालिका) लागू किया जाता है। सत्यापन के लिए तूफान और संबंधित मौसम के लिए नाउकास्ट की सभी ग्यारह श्रेणियों पर विचार किया जाता है। किसी जिले में नाउकास्ट की वैधता अवधि के भीतर बिजली गिरने की कम से कम 2 (दो) घटनाओं को उस जिले में तूफान की घटना माना जाता है। दो फ्लैश एक साथ या बाद में जिले के किसी भी हिस्से में तीन घंटे की अवधि के भीतर हो सकते हैं, यानी, जिले के लिए नाउकास्ट की वैधता के समय के दौरान। गरज के साथ बारिश (ग्यारह श्रेणियों में से कोई एक) के लिए अवलोकन और नाउकास्ट दोनों के आधार पर, पूर्वानुमान कौशल स्कोर की गणना की गई है। चित्र (x-z, xx) FDP STORM अवधि-2022 (मार्च से जून) के लिए 3 घंटे के जिला नाउकास्ट सत्यापन के जिलेवार POD, FAR, CST और ETS स्कोर का प्रतिनिधित्व करता है।



चित्र (एक्स). एफडीपी स्टॉर्म अवधि -2022 के लिए 3 घंटे के जिले नाउकास्ट सत्यापन की जिलेवार पीओडी

चित्र (वाई). एफडीपी स्टॉर्म अवधि-2022 के लिए 3 घंटे के जिला नाउकास्ट सत्यापन का जिलावार एफएआर

चित्र (जेड). एफडीपी स्टॉर्म अवधि -2022 के लिए 3 घंटे के जिला नाउकास्ट सत्यापन का जिलावार सीएसआई

चित्र (xx). एफडीपी स्टॉर्म अवधि -2022 के लिए 3 घंटे के जिले का जिलावार ईटीएस

(ii) क्राउडसोर्सिंग

"क्राउडसोर्सिंग" शब्द पहली बार 2006 में अमेरिकी पत्रकार जेफ होवे द्वारा गढ़ा गया था, जिन्होंने इसे "किसी कंपनी या संस्थान के कर्मचारियों द्वारा किए गए कार्य को लेने और इसे लोगों के एक अपरिभाषित (और सामान्य बड़े) नेटवर्क को आउटसोर्स करने का कार्य" के रूप में परिभाषित किया था। एक खुली कॉल का रूप.

हाल के वर्षों में, भारतीय क्षेत्र में मौसम प्रणालियों की मेसोस्केल प्रकृति की बेहतर समझ के साथ, मौजूदा वेधशाला नेटवर्क की बाधाओं को अवलोकन के अन्य स्रोतों द्वारा पूरक करने की मांग की गई है। इस आवश्यकता को आंशिक रूप से रडार और उपग्रह आधारित उपकरणों और बिजली का पता लगाने वाले नेटवर्क द्वारा मौसम के दूरस्थ संवेदी अवलोकनों से प्रा किया गया है। हालाँकि, जमीनी डेटा के साथ सत्यापन के अभाव में, प्रत्येक उपकरण की सीमाएँ घटित मौसम और उसकी तीव्रता और प्रभाव की स्पष्ट तस्वीर बनाने की प्रक्रिया में बाधा डालती हैं। अवलोकनों में स्पष्टता की कमी के कारण आगामी मौसम और उससे जुड़े प्रभाव के पूर्वान्मानों में अनिश्चितता पैदा होती है। स्मार्ट फोन की व्यापक उपलब्धता के साथ, वातावरण की स्थिति के बारे में जानकारी अब कई गैर-पारंपरिक स्रोतों से पाठ, ऑडियो और वीडियो के रूप में नागरिक वैज्ञानिकों (विगिन्स और क्रॉस्टन, 2011), शौकिया मौसम स्टेशनों और जैसे स्रोतों से प्राप्त की जा सकती है। सेंसर, स्मार्ट डिवाइस और सोशल-मीडिया/वेब 2.0 (मुलर एट अल.)।

चित्र (वाई वाई). क्राउडसोर्सिंग मौसम रिपोर्टिंग इंटरफ़ेस लिंक:

https://city.imd.gov.in/citywx/crowd/enter_th_datag.php

2021 के बाद से, आईएमडी ने मौसम की जानकारी के साथ-साथ शुरुआत में छह मौसम की घटनाओं, जैसे बारिश, ओलावृष्टि, धूल भरी आंधी, हवा की गति, गरज के साथ संबंधित प्रभाव की जानकारी एकत्र करने के लिए एक ऑनलाइन इंटरफ़ेस (चित्र (वर्ष)) शुरू किया है। /बिजली और कोहरा। लक्ष्य मौसम रिपोर्टर हैं (ए) क्लास ॥, क्लास ॥ वेधशालाएं (एमएमआर के तहत कवर नहीं की गई कोई भी वेधशाला) (बी) एएमएफयू, केवीके वेधशालाएं (सी) रेलवे स्टेशन मास्टर्स (डी) पावर डिस्कॉम रखरखाव कर्मचारी और (ई)) आम जनता। इसके अलावा, इंटरफ़ेस में निम्नलिखित विशेषताएं हैं: (i) रिपोर्टिंग इंटरफ़ेस बिना लॉगिन आवश्यकता के है। (ii) सबिमशन का समय स्वचालित रूप से रिकॉर्ड किया जाएगा। (iii) उपयोगकर्ता मशीन का पता और समय स्वचालित रूप से रिकॉर्ड किया जाता है। (iv)) उपयोगकर्ता के पास अवलोकन के स्थान, राज्य, जिले को रिकॉर्ड करने की सुविधा है। घटना का फोटो या वीडियो प्रमाण जोड़ने की भी स्विधा है।

अध्याय 5

आईएमडी की मौसम और जलवायु सेवाएं

5.1. हाइड्रोमेट सेवाएँ

2022 के दौरान, आईएमडी ने मात्रात्मक वर्षा पूर्वानुमान (क्यूपीएफ) कौशल में 1% सुधार करके बाढ़ मौसम विज्ञान सेवाओं में कुछ महत्वपूर्ण सुधार हासिल किया, दिन-2 और दिन-4 में नदी उप बेसिन वार क्यूपीएफ और संभाव्य क्यूपीएफ की लीड अविध में वृद्धि की, डीआरएमएस नेटवर्क को 5204 से बढ़ाया। 5611 वर्षा स्टेशनों और दक्षिण एशिया के लिए अचानक बाढ़ मार्गदर्शन सेवाओं का पूर्ण संचालन।

प्रमुख उपलब्धियां

बाढ़ के मौसम 2022 के लिए भारत, नेपाल, भूटान, बांग्लादेश और श्रीलंका को अचानक बाढ़ मार्गदर्शन सेवाएं प्रदान करने के लिए SASIAFFGS का सफल संचालन।

हाइड्रोएसओएस - नेपाल, भूटान, बांग्लादेश और भारत के सहयोग से जीबीएम बेसिन के लिए हाइड्रोलॉजिकल स्थिति और आउटलुक सिस्टम (हाइड्रोसओएस) के लिए एक डब्ल्यूएमओ परियोजना श्रूक की गई।

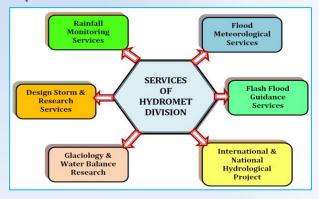
407 रेन गेज स्टेशनों को सीआरआईएस में शामिल किया गया और 2022 के वर्ष में आरएमसी/एमसी को स्टेशन कोड प्रदान किया गया।

वर्षा सारांश/आंकड़े तैयार करने में जिले की संख्या 695 से बढ़कर 703 हो गई।

1971-2020 की अवधि के आधार पर नई वर्षा सामान्य को अखिल भारतीय वर्षा सारांश 2022 के लिए अनुकूलित वर्षा सूचना प्रणाली में लागू किया गया था।

राज्य सरकार की नीति के अनुसार आरएमसी/एमसी की मांग पर जिलों और स्टेशनों के नाम बदलना।

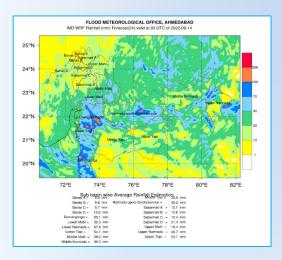
703 जिलों के बीच मानसून के मौसम में वर्षा सारांश में जिलों का गैर-प्रतिनिधित्व 0 हो गया है। (कोई भी जिला डेटा उपलब्ध नहीं श्रेणी में नहीं रहा)।

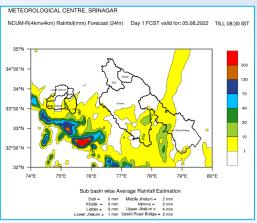

हाइड्रोमेट डिवीजन का अधिदेश

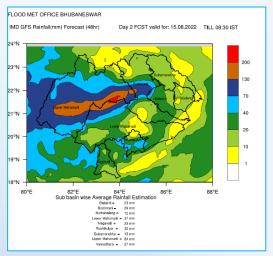
जल-मौसम विज्ञान प्रभाग की स्थापना निम्नलिखित अधिदेशों को पूरा करने के लिए की गई है, जिसमें सभी हितधारकों, केंद्र/राज्य सरकार को समर्थन देने के लिए विभिन्न सेवाएं प्रदान की जा रही हैं। क्षेत्र विशिष्ट अनुप्रयोगों में संगठन और अन्य एजेंसियां। (चित्र .1)।

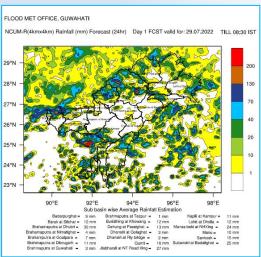
चित्र 1. हाइड्रोमेट डिवीजन का अधिदेश

आईएमडी की जल-मौसम विज्ञान सेवाओं का अवलोकन

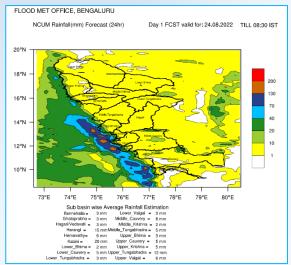

चित्र 2. हाइड्रोमेट प्रभाग की सेवाएँ

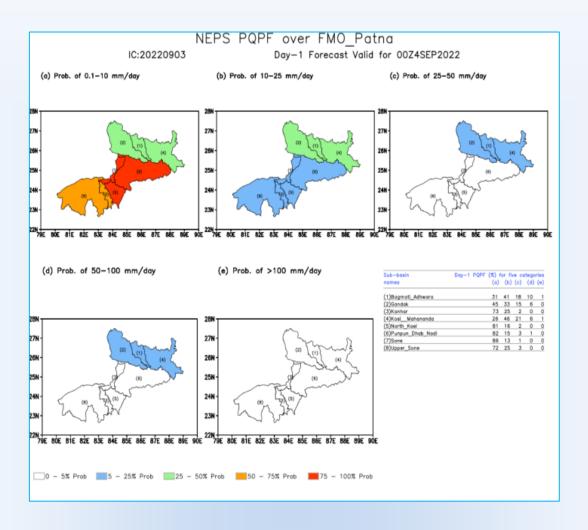

बाढ़ मौसम विज्ञान सेवाएँ

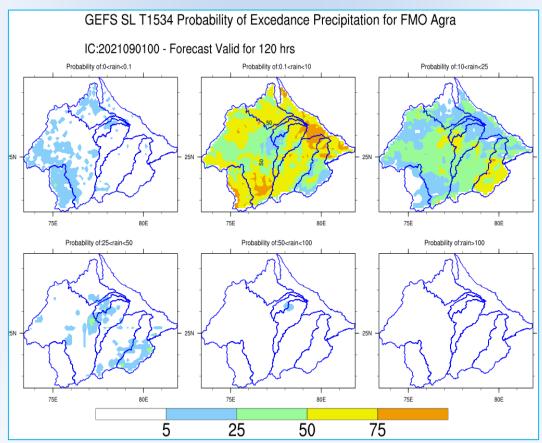

एफएमओ आगरा, नई दिल्ली, आसनसोल, अहमदाबाद, भुवनेश्वर, गुवाहाटी, जलपाईगुड़ी, हैदराबाद, लखनऊ, पटना, डीवीसी मौसम इकाई कोलकाता, एमसी श्रीनगर, द्वारा उप-बेसिन वार मात्रात्मक वर्षा पूर्वानुमान (क्यूपीएफ) (परिचालन आधार पर दैनिक) जारी किए गए थे। चेन्नई, तिरुवनंतपुरम और बेंगलुरु ने मानसून सीजन 2022 के दौरान 1 जून से अक्टूबर 2022 तक अपने अधिकार क्षेत्र के लिए। एफएमओ चेन्नई, तिरुवनंतपुरम और बेंगलुरु ने 31 दिसंबर 2022 तक क्यूपीएफ जारी करना जारी रखा। ये परिचालन क्यूपीएफ केंद्रीय जल आयोग के क्षेत्रीय कार्यालयों को प्रदान किए गए थे। उनके बाढ़ पूर्वानुमान मॉडल में उपयोग के लिए।


इस वर्ष के दौरान, नदी उप-बेसिन-वार क्यूपीएफ की समान श्रेणी के भीतर सटीकता में 2021 की तुलना में दिन-2 और दिन-4 में 1% का सुधार हुआ है।

डब्ल्यूआरएफ एआरडब्ल्यू (3 किमी x 3 किमी) और एनसीयूएम-आर (4 किमी x 4 किमी) का उपयोग करके दिन-1, दिन-2, दिन-3 के लिए नदी उप बेसिन-वार मात्रात्मक वर्षा अनुमान, जीएफएस (12 किमी) का उपयोग करके दिन-1 से दिन-7 के लिए x 12 किमी) और एनसीयूएम-जी (12 किमी x 12 किमी) को 153 नदी उप-बेसिनों के लिए आईएमडी वेबसाइट पर सक्रिय रूप से अपलोड किया गया था।






आईएमडी ने हाइड्रोलॉजिकल मॉडलिंग में उपयोग के लिए केंद्रीय जल आयोग को गतिशील मॉडल अर्थात जीएफएस (12 किमी x 12 किमी) और डब्ल्यूआरएफ (3 किमी x 3 किमी) का ग्रिडयुक्त वर्षा पूर्वानुमान डेटा प्रदान किया।

गतिशील मॉडल जीईएफएस और एनईपीएस पर आधारित नदी उप बेसिन वार संभाव्य क्यूपीएफ को आईएमडी वेबसाइट पर परिचालन रूप से अपलोड किया गया था।

INDIA METEOROLOGICAL DEPARTMENT

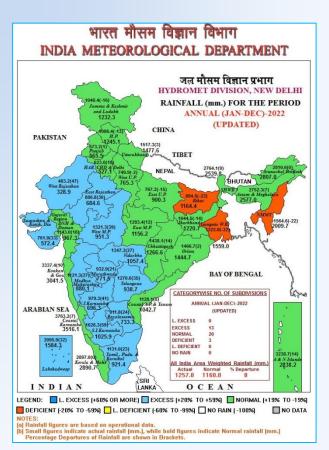
गृह मंत्रालय के सुझाव के अनुसार आईएमडी, सीडब्ल्यूसी और एनडीआरएफ द्वारा देश की बाढ़ की स्थिति पर संयुक्त सलाह जारी करना

Fl. No.	River/Sub-Basin/Basin	State	District]	Remark s/				
110.				Day 1	Day 2	Day 3	Day 4	Day 5	Advisori es
1	Penganga/Middle Godavari/Godavari	Maharashtra	Yavatmal						
2	Wardha/Middle Godavari/Godavari	Maharashtra	Chandrapur						
3	Godavari/Middle Godavari/Godavari	Telangana	Adilabad Bhupalpally						
4	Sabari/Lower Godavari/Godavari	Andra Pradesh	Alluri Sitharama Raju						
5	Goadavari/Lower Godavari/Godavari	Andra Pradesh	Alluri Sitharama Raju						
6	Kosi/Kosi/Ganga	Bihar	Supaul						
7	Sabari/Lower Godavari/Godavari	Chhattisgarh	Sukma						
8	Indravathi /Lower Godavari/Godavari	Chhattisgarh	Bijapur						
9	Damanganga/Damanganga/West Flowing Rivers from Tapi to Tadri	Dadra and Nagar Haveli	Dadra and Nagar Haveli						
10	Purna/Purna/West Flowing Rivers from Tapi to Tadri	Gujarat	Surat						
11	Cauvery/Upper Cauvery/Cauvery	Karnataka	Chamarajan agar						
12	Tungabhadra /Upper Krishna/Krishna	Karnataka	Shimoga						
13	Kumudvati/Upper Krishna/Krishna	Karnataka	Haveri						
14	Varadha/Upper Krishna/Krishna	Karnataka	Haveri						
15	Bhavani/Middle Cauvery/Cauvery	Kerala	Palaghat						
16	Tapi/Middle Tapi/Tapi	Madhya Pradesh	Burhanpur						
17	Noyyal/Middle Cauvery/Cauvery	Tamil Nadu	Coimbatore						
18	Godavari/Middle Godavari/Godavari	Telangana	Mulugu Badradri						
19	Sarda/Ghaghara/Ganga	Uttar Pradesh	Kheri						

केंद्रीय एजेंसियों को नदी उप बेसिनवार गंभीर बाढ़ की स्थिति और उच्च क्यूपीएफ की दैनिक निगरानी प्रदान की गई

	Flood Monitoring Offices		Flo	ood				Qua	antitat	tive l	Precipi	tatio	n Foi	recas	t (QI	PF)				
			Level (CWC)		Day-1 (13-05-2022)*		Day-2 (14-05-2022)*			Day-3 (15-05-2022)*			Day-4 (16-05-2022)*			Day-5 (17-05-2022)*				
SNo	FMO	Basin	Sub-Basin	Severe Flood	Extreme Flood	26-50mm	51-100mm	>100mm	26-50mm	51-100mm	>100mm	26-50mm	51-100mm			51-100mm	>100mm	26-50mm	51-100mm	>100mm
1	FMO Jalpaiguri	Brahmaputra	Jaldhaka			1			1			√			V			√		
2	FMO Jalpaiguri	Brahmaputra	Torsa			V				V			V			V		√		
3	FMO Jalpaiguri	Brahmaputra	Raidak			V				V			1			√		√		
4	FMO Guwahati	Barak	Barak at Silchar			√												√		
5	FMO Guwahati	Barak	Badarpurghat			√			√									√		
6	FMO Guwahati	Gumti	Gumti			V														
7	FMO Guwahati	Brahmaputra	Lohit at Dholla			V														
8	FMO Guwahati	Brahmaputra	Brahmaputra at Dibrugarh			1														
9	FMO Guwahati	Brahmaputra	Buridihing at Khowang			1														
10	FMO Guwahati	Brahmaputra	Jiabharali at NT road Xing			1														
11	FMO Guwahati	Brahmaputra	Manas/ Beki at N H Xing			1			1											
12	FMO Guwahati	Brahmaputra	Brahmaputra at Goalpara			1			1											
13	FMO Guwahati	Brahmaputra	Brahmaputra at Dhubri			V			V			√								
14	FMO Guwahati	Brahmaputra	Sankosh			V			√			√								

डिजाइन तूफान अध्ययन/तूफान विश्लेषण


- 1. हाइड्रोलिक संरचनाओं, सिंचाई परियोजनाओं, बांधों के लिए डिजाइन बाढ़ का अनुमान लगाने में डिजाइन इंजीनियरों के लिए मुख्य इनपुट के रूप में उपयोग के लिए, देश में विभिन्न नदी जलग्रहण क्षेत्रों/परियोजनाओं के लिए डिजाइन तूफान अनुमान (वर्षा की मात्रा और समय वितरण) का मूल्यांकन करने के लिए डिजाइन तूफान अध्ययन आयोजित किए जा रहे हैं। आदि विभिन्न नदियों पर। अंडारण और स्पिलवे क्षमता के सुरक्षित और इष्टतम डिजाइन के लिए डिजाइन मूल्यों का यह अनुमान आवश्यक है। केंद्र सरकार/राज्य सरकार, निजी एजेंसियों के अनुरोध पर, मुख्य इनपुट के रूप में उपयोगकर्ताओं के लिए डिजाइन तूफान मूल्य (मानक परियोजना तूफान, समय वितरण के साथ संभावित अधिकतम वर्षा, आईडीएफ वक्र आदि) प्रदान किए जा रहे हैं। वेस्तृत परियोजना रिपोर्ट परियोजना अधिकारियों को भेजी जाती है
- 2. वर्ष 2022 के दौरान ग्यारह (11) परियोजनाओं का डिज़ाइन स्टॉर्म अध्ययन पूरा कर लिया गया है। 30,87,951/- रुपये (तीस लाख सत्तासी हजार नौ सौ इक्यावन रुपये मात्र) का राजस्व उत्पन्न हुआ।
- 3. "2021 के दौरान किए गए डिज़ाइन स्टॉर्म अध्ययन" शीर्षक से तकनीकी रिपोर्ट प्रकाशित की और आईएमडी वेबसाइट पर अपलोड की गई।

वर्षा निगरानी सेवाएँ

- प्रमुख सेवाओं में वास्तविक समय में वर्षा की निगरानी और पूरे वर्ष का सारांश दिवस शामिल है। अद्यतन मासिक, मौसमी और वार्षिक वर्षा आँकड़े लाता है और वार्षिक वर्षा रिपोर्ट प्रकाशित करता है।
- 2. हाइड्रोमेट डिवीजन हर हफ्ते गुरुवार से बुधवार तक और महीनों के लिए वास्तविक समय में वर्षा का सारांश निकालता है। मानसून के मौसम के दौरान, 703 जिलों, 36 मौसमों के लिए इसे दैनिक आधार पर तैयार किया जाता है। उप-मंडल, केंद्रशासित प्रदेश सहित 36 राज्य, 4 क्षेत्र और समग्र रूप से देश के लिए। इसके अलावा, भारत की 61 चयनित नदी घाटियों के लिए वर्षा के आंकड़े भी तैयार किए जाते हैं और मानचित्र आईएमडी की वेबसाइट पर अपलोड किए जाते हैं। यह इकाई देर से प्राप्त आंकड़ों को शामिल करने के बाद अद्यतन

मासिक, मौसमी और वार्षिक वर्षा आंकड़े भी सामने लाती है। वर्षा निगरानी इकाई वार्षिक वर्षा रिपोर्ट भी प्रकाशित करती है।

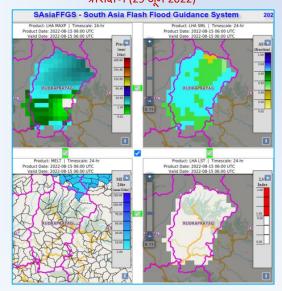
- 3. वर्षा सारांश का उपयोग विभिन्न हितधारकों द्वारा कृषि योजना और सलाह, फसल उपज पूर्वानुमान, कृषि मूल्य निर्धारण, सिंचाई आवश्यकताओं का अनुमान, राहत उपाय, जल विद्युत योजना और कई अन्य आर्थिक और अनुसंधान गतिविधियों जैसे कई उद्देश्यों के लिए किया जाता है। वर्षा आंकड़ों के प्राप्तकर्ताओं में माननीय कार्यालय जैसे उच्च अधिकारी शामिल हैं। प्रधान मंत्री, सचिव MOES आदि।
- 4. लगभग 5611 डीआरएमएस स्टेशनों के अखिल भारतीय नेटवर्क के साथ वार्षिक (जनवरी-दिसंबर) -2022 के लिए वर्षा के आंकड़े तैयार किए गए।
- 5. वार्षिक (जनवरी-दिसंबर)-2022 के लिए वर्षा के आँकड़े तैयार किए गए। वार्षिक (जनवरी-दिसंबर)-2022 के लिए पूरे देश में वर्षा 1257.0 मिमी दर्ज की गई है, जो कि इसकी लंबी अविध के औसत (एलपीए) 1160.0 मिमी का 108% है। कुल मिलाकर, श्रेणी के अनुसार, 13 मौसम उप-विभाग अधिक में, 20 मौसम उप-विभाग सामान्य में, 03 अल्प और शून्य में। उप-विभाग वर्षा की अधिकता, अत्यधिक कमी और वर्षा न होने की श्रेणी में रहे।

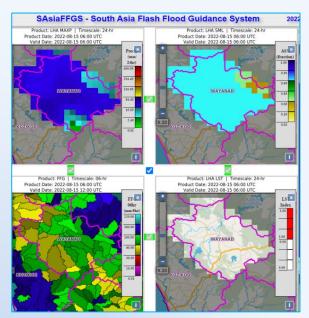
SUBDIVISION-WISE RAINFALL (MM) DISTRIBUTION

S.	METEOROLOGICAL	PERIOD:	ANNUA	AL (JAN-DEC) -2	2022
NO.	SUBDIVISIONS	ACTUAL	NORMAL	% DEP.	CAT.
EAST & NORT	H EAST INDIA	1815.6	1946.5	-7%	
1	ARUNACHAL PRADESH	2810.6	2807.0	0%	N
2	ASSAM & MEGHALAYA	2752.3	2577.0	7%	N
3	NMMT	1564.6	2009.7	-22%	D
4	SHWB & SIKKIM	2764.1	2539.8	9%	N
5	GANGETIC WEST BENGAL	1222.0	1559.0	-22%	D
6	JHARKHAND	1044.5	1220.7	-14%	N
7	BIHAR	894.5	1164.4	-23%	D
NORTH WEST	INDIA	827.6	833.3	-1%	
1	EAST U.P.	767.3	900.3	-15%	N
2	WEST U.P.	749.9	765.3	-2%	N
3	UTTARAKHAND	1517.3	1477.6	3%	N
4	HAR. CHD & DELHI	623.6	527.1	18%	N
5	PUNJAB	573.2	565.5	1%	N
6	HIMACHAL PRADESH	1086.4	1245.1	-13%	N
7	J & K AND LADAKH	1040.4	1232.3	-16%	N
8	WEST RAJASTHAN	483.2	328.9	47%	E
9	EAST RAJASTHAN	886.8	684.6	30%	E
CENTRAL IND	IA	1304.5	1105.0	18%	
1	ODISHA	1466.7	1444.7	2%	N
2	WEST MADHYA PRADESH	1321.3	951.3	39%	Е
3	EAST MADHYA PRADESH	1293.4	1156.2	12%	N
4	GUJARAT REGION	1143.0	967.3	18%	N
5	SAURASHTRA & KUTCH	761.9	572.4	33%	Е
6	KONKAN & GOA	3337.4	3041.5	10%	N
7	MADHYA MAHARASHTRA	1121.3	880.1	27%	E
8	MARATHWADA	932.9	771.5	21%	E
9	VIDARBHA	1347.3	1057.4	27%	E
10	CHHATTISGARH	1438.1	1266.6	14%	N
SOUTH PENIN	SULA	1394.4	1127.2	24%	
1	A & N ISLAND	3238.7	2838.2	14%	N
2	COASTAL A. P.& YANAM	1128.1	1042.7	8%	N
3	TELANGANA	1270.6	938.7	35%	Е
4	RAYALASEEMA	911.8	733.3	24%	E
5	TAMIL., PUDU. & KARAIKAL	1131.0	921.4	23%	E
6	COASTAL KARNATAKA	3763.2	3516.1	7%	N
7	N. I. KARNATAKA	979.3	696.3	41%	E
8	S. I. KARNATAKA	1628.3	1025.9	59%	Е
9	KERALA & MAHE	2897.0	2890.7	0%	N
10	LAKSHADWEEP	2095.9	1584.3	32%	Е
COUNTRY AS		1257.0	1160.0	8%	


CATEGORYWISE NO. OF SUBDIVISIONS & % AREA (SUBDIVISIONAL) OF THE COUNTRY

	PERIOD: ANNUA	AL (JAN-DEC) -2022
CATEGORY	NO. OF	SUBDIVISIONAL
		% AREA OF
	SUBDIVISIONS	COUNTRY
LARGE EXCESS	0	0%
EXCESS	13	42%
NORMAL	20	51%
DEFICIENT	3	7%
LARGE DEFICIENT	0	0%
NO RAIN	0	0%


दक्षिण एशिया आकस्मिक बाढ़ मार्गदर्शन सेवाएँ


दक्षिण एशिया कार्यक्रम के लिए प्रमुख फ्लैश फ्लड गाइडेंस सर्विसेज के तहत हालिया पहल

- 1. फ्लैश फ्लड गाइडेंस सर्विसेज: दक्षिण एशिया कार्यक्रम के लिए प्रमुख फ्लैश फ्लड गाइडेंस सर्विसेज के तहत हालिया पहल:
- (I) भारतीय उपमहाद्वीप के संवेदनशील पहाड़ी क्षेत्रों में भूस्खलन से संबंधित फ्लैश बाढ़ की बेहतर भविष्यवाणी के लिए फ्लैश फ्लड मार्गदर्शन प्रणाली में भूस्खलन संवेदनशीलता मॉड्यूल का एकीकरण। भूस्खलन एक प्रमुख जल-भूवैज्ञानिक खतरा है जो क्षेत्र की स्थलाकृतिक विशेषताओं को प्रभावित करने वाले मानवीय हस्तक्षेप के साथ-साथ लगातार बारिश के कारण उत्पन्न होता है। पिछले कुछ बाढ़ सीज़न के दौरान, ये घटनाएं उत्तराखंड के रुद्रप्रयाग जिले और केरल के वायनाड जिले में तेजी से देखी जा रही हैं। जीएसआई, एनआरएससी, आईएमडी और एचआरसी के सहयोग से, 29 जून, 2022 को एक आभासी प्रशिक्षण आयोजित किया गया था और रुद्रप्रयाग और वायंड के भूस्खलन संवेदनशीलता मॉड्यूल को संचालन के लिए एफएफजीएस में सफलतापूर्वक एकीकृत किया गया था।

भूस्खलन संवेदनशीलता मॉड्यूल पर एचआरसी द्वारा 1-दिवसीय प्रशिक्षण (29 जून 2022)

भूस्खलन संवेदनशीलता मॉड्यूल रुद्रप्रयाग और वायनाड

शहरी शहरों की वास्तविक समय में बाढ़ की निगरानी के लिए शहरी बाढ़ मॉड्यूल का फ्लैश फ्लड मार्गदर्शन प्रणाली में एकीकरण। इस संदर्भ में, बढ़ती विकास क्षमता, अचानक बाढ़/जल जमाव की संवेदनशीलता के आधार पर शहरी बाढ़ मॉडलिंग पर पायलट अध्ययन के लिए दिल्ली का चयन किया गया है। WMO एक विकास भागीदार के रूप में HRC के सहयोग से इस परियोजना को वित्तपोषित करने पर सहमत हुआ है। इस परियोजना के कार्यान्वयन को सुविधाजनक बनाने के लिए पूर्व-अपेक्षित डेटासेट का विवरण एकत्र किया जा रहा है।

फ्लैश फ्लड मार्गदर्शन सेवाएं प्रदान करने के लिए ग्राफिकल बुलेटिन के रूप में फ्लैश फ्लड अलर्ट के स्वचालन के घरेलू विकास का परीक्षण किया गया और दिसंबर 2022 से संचालन के लिए चालू किया गया।

5.2. कृषि मौसम संबंधी सलाह सेवाएँ

कृषि मौसम विज्ञान वेधशालाएँ एवं डेटा प्रबंधनः

- (i) एग्रोमेट डिवीजन 191 पारंपरिक एग्रोमेट वेधशालाओं का एक नेटवर्क बनाए रखता है। अवलोकन एग्रोमेट डिवीजन की वेबसाइट (https://www.imdagrimet.gov.in/) पर अपलोड किए जाते हैं।
- (ii) कृषि विज्ञान केंद्रों (केवीके) के परिसर में जिला कृषि मौसम इकाइयों (डीएएमय्) में 200 एग्रो-एडब्ल्यूएस स्थापित किए गए हैं।

- (iii) मौसम डेटा को किसान सुविधा ऐप और उमंग ऐप के साथ एकीकृत किया गया है।
- (iv) विभिन्न स्टेशनों से प्राप्त एग्रोमेट डेटा की जांच की जाती है और इसे राष्ट्रीय डेटा सेंटर पुणे (एनडीसी) में संग्रहीत किया जा रहा है।

ग्रामीण कृषि मौसम सेवा (जीकेएमएस) के तहत मौसम सेवाएं।

ए. कृषि मौसम सलाहकार सेवा (एएएस) बुलेटिन तैयार करना

भारत मौसम विज्ञान विभाग (आईएमडी), पृथ्वी विज्ञान मंत्रालय आईसीएआर, राज्य कृषि विश्वविद्यालय और अन्य संस्थानों के सक्रिय सहयोग से मौजूदा 130 एग्रो के नेटवर्क के माध्यम से जिला/ब्लॉक स्तर पर किसानों को मौसम पूर्वानुमान आधारित कृषि मौसम सलाहकार सेवाएं (एएएस) प्रदान कर रहा है। -मेट फील्ड यूनिट्स (एएमएफयू) और 199 डिस्ट्रिक्ट एग्रोमेट यूनिट्स (डीएएमयू)। ये कृषि मौसम संबंधी सलाह ग्रामीण कृषि मौसम सेवा (जीकेएमएस) के तहत देश के 700 जिलों और 3100 ब्लॉकों को कवर करते हुए सप्ताह में दो बार (मंगलवार और शुक्रवार) 329 इकाइयों (एएमएफयू/ डीएएमयू) द्वारा तैयार और प्रसारित की जा रही है। विभिन्न स्तरों पर उपयोगकर्ताओं की जरूरतों को पूरा करने के लिए एएएस बुलेटिन भी प्रत्येक मंगलवार और शुक्रवार को राज्य स्तर पर और प्रत्येक श्क्रवार को राष्ट्रीय स्तर पर तैयार और जारी किए जाते हैं। बुलेटिन में पिछला मौसम, अगले 5 दिनों के लिए मध्यम अवधि का मौसम पूर्वान्मान और खेत की फसलों, बागवानी फसलों, पशुधन आदि पर विशिष्ट कृषि मौसम संबंधी सलाह शामिल हैं।

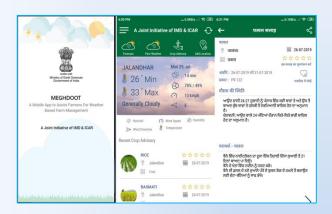
बी. कृषि मौसम संबंधी सलाह का प्रसार

- (i) ऑल इंडिया रेडियो (एआईआर) और दूरदर्शन, निजी टीवी और रेडियो चैनलों, समाचार पत्र और इंटरनेट, एसएमएस और आईवीआर (इंटरएक्टिव वॉयस रिस्पांस टेक्नोलॉजी) आदि जैसे विभिन्न मल्टी-चैनलों के माध्यम से किसानों को कृषि मौसम संबंधी सलाह का प्रसार किया जा रहा है। बाहर। सार्वजनिक निजी भागीदारी (पीपीपी) मोड के तहत, रिलायंस फाउंडेशन, इफको किसान संचार लिमिटेड (आईकेएसएल), किसान संचार आदि कृषक समुदाय को एसएमएस और आईवीआर प्रारूप में कृषि संबंधी सलाह प्रसारित कर रहे हैं।
- (ii) इसके अलावा, कई एएमएफयू कृषि प्रौद्योगिकी प्रबंधन एजेंसी (एटीएमए)/केवीके के सहयोग से एसएमएस के माध्यम

से कृषि संबंधी सलाह भेज रहे हैं। वर्तमान में, चरम मौसम की घटनाओं के लिए विशेष बुलेटिन के प्रसार की सुविधा DAC&FW के mKisan पोर्टल द्वारा की जाती है।

(iii) एसएमएस के अलावा, एग्रोमेट सलाह को एएमएफयू और डीएएमयू द्वारा व्हाट्सएप जैसे सोशल मीडिया की मदद से कृषक समुदाय तक सीधे प्रसारित किया जाता है। दिसंबर 2022 तक 16,377 व्हाट्सएप समूहों के माध्यम से 3,645 ब्लॉकों के 1,21,443 गांवों में 13,75,330 किसानों को कृषि मौसम संबंधी सलाह प्रसारित की गई है (चित्र 1)।

चित्र 1. व्हाट्सएप के माध्यम से क्षेत्रीय भाषाओं में कृषि मौसम संबंधी सलाह का प्रसार


(iv) विभिन्न राज्य विभागों (छत्तीसगढ़, तमिलनाडु, हरियाणा, मध्य प्रदेश, गुजरात, राजस्थान, बिहार, नागालैंड, उत्तराखंड, मेघालय, उत्तर प्रदेश (पंचायत राज वेबसाइट के साथ एकीकरण)) के मोबाइल ऐप और वेबसाइटों के साथ एग्रोमेट सलाह का एकीकरण और ओडिशा (OSDMA के SATARK ऐप के साथ एकीकरण) (चित्र 2)।

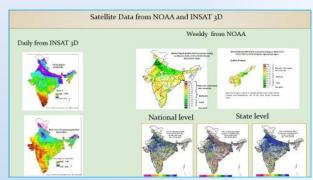
चित्र 2. मोबाइल राज्य सरकार ऐप्स और एग्रील के साथ सलाह का एकीकरण। विश्वविदयालयों

(iv) मेघदूत मोबाइल ऐप

मोबाइल ऐप, मेघदूत, भारत मौसम विज्ञान विभाग (आईएमडी), भारतीय उष्णकटिबंधीय मौसम विज्ञान संस्थान (आईआईटीएम) और आईसीएआर की एक संयुक्त पहल का उद्देश्य एक सरल और उपयोग में आसान मोबाइल एप्लिकेशन के माध्यम से किसानों तक महत्वपूर्ण जानकारी पहुंचाना है। मौसम की जानकारी और कृषि मौसम संबंधी सलाह विभिन्न अन्य ऐप्स के माध्यम से भी प्रसारित की जा रही है।

(v) भू-स्थानिक कृषि मौसम सलाहकार सेवा

हाल ही में, आईएमडी ने मौसम वेबसाइट पर वेबजीआईएस का उपयोग करके बारिश, बादल कवर, अधिकतम और न्यूनतम तापमान, हवा की गति और दिशा, सापेक्ष आर्द्रता सुबह और दोपहर, चेतावनियों और नाउकास्ट पर अगले 5 दिनों के लिए जिला स्तर (12 किमी रिज़ॉल्यूशन) पर मौसम पूर्वानुमान प्रदर्शित करना शुरू कर दिया है। देश के 700 जिलों के लिए जिला स्तरीय कृषि मौसम संबंधी सलाह स्थानीय भाषा में भी उपलब्ध है (चित्र 3)।



चित्र 3. भू-स्थानिक कृषि मौसम सलाहकार सेवा

सी. एग्रोमेट उत्पाद

कृषि मौसम विभाग ने निम्नलिखित कृषि मौसम उत्पादों का उत्पादन जारी रखा है, जैसे विभिन्न अस्थायी पैमानों पर मौसम मापदंडों की स्थानिक भिन्नता, मिट्टी की नमी (एसएम): वास्तविक जानकारी (दैनिक) और पूर्वान्मान

(मंगलवार और शुक्रवार को सप्ताह में दो बार), मिट्टी का तापमान और के आधार पर अनुमानित एसएम। वाष्पीकरण। इसके अलावा सैटेलाइट उत्पाद जैसे सामान्यीकृत अंतर वनस्पति सूचकांक (एनडीवीआई), संदर्भ वाष्प-उत्सर्जन और सूर्यातप मानचित्र, वनस्पति स्थिति सूचकांक (वीसीआई), वनस्पति स्वास्थ्य सूचकांक (वीएचआई) और तापमान स्थिति सूचकांक (टीसीआई) चित्र 4।

चित्र. 4. सैटेलाइट डेटा उत्पाद

डी. एनआरएससी, हैदराबाद के भुवन पोर्टल में कृषि मौसम उत्पादों का प्रदर्शन

एग्रीमेट डिवीजन ने राष्ट्रीय रिमोट सेंसिंग सेंटर, हैदराबाद द्वारा विकसित भुवन पोर्टल में दैनिक आधार पर विभिन्न अस्थायी पैमानों पर मौसम मापदंडों के स्थानिक वितरण का प्रदर्शन शुरू किया।

इ. अंतरिक्ष अनुप्रयोग केंद्र (एसएसी), अहमदाबाद ने हाल ही में जीकेएमएस योजना के तहत फसल विकास निगरानी के लिए इसरो-आईएमडी वनस्पति सूचना प्रणाली विकसित की है। सलाहकारी तैयारी में उपयोग के लिए विवरण सभी एएमएफयू के साथ साझा किया गया है (चित्र 5)।

चित्र. 5. इसरो-आईएमडी वनस्पति सूचना प्रणाली

एफ. गतिशील फसल मौसम कैलेंडर (डीसीडब्ल्यूसी)

आईएमडी ने आईसीएआर-सीआरआईडीए के सहयोग से गतिशील फसल मौसम कैलेंडर विकसित किया; वास्तविक

समय फसल फेनोलॉजिकल चरण और उनकी सामान्य मौसम की आवश्यकता को संबोधित करने के लिए एक नामित स्टैंडअलोन मॉड्यूल। यह मॉड्यूल जल संतुलन दृष्टिकोण के आधार पर फसल की सिंचाई आवश्यकता को पूरा करने में भी मदद करता है। डीसीडब्ल्यूसी का इरादा प्रचलित और पूर्वानुमानित मौसम का उपयोग करके कृषि संबंधी सलाह को एकीकृत करने का है। सभी कृषि-जलवायु क्षेत्रों को कवर करने वाले 303 स्थानों के लिए मॉड्यूल को मान्य किया गया है।

जी. चरम मौसम की घटनाओं के प्रबंधन के लिए समर्थन

वर्ष के दौरान, संबंधित कृषि मौसम क्षेत्र इकाइयों द्वारा कृषक समुदाय को प्रभाव आधारित पूर्वानुमान (आईबीएफ) के साथ-साथ संबंधित एसएमएस भी जारी किए गए हैं।

राज्यों के (एएमएफयू) कृषि मौसम सलाह के साथ-साथ अलर्ट और चेतावनियों के रूप में चक्रवाती तूफान और अन्य चरम मौसम की घटनाओं से फसलों की रक्षा करते हैं। विभिन्न चरम घटनाओं के दौरान एसएमएस प्राप्त करने वाले किसानों की संख्या नीचे दी गई है:

- (i) चक्रवाती तूफान असानी (7-11 मई) 2022, सीतारंग (23-24 अक्टूबर) और मंडौग (8-9 दिसंबर) के लिए विशेष कृषि मौसम बुलेटिन और भारी वर्षा की चेतावनी जारी की गई थी।
- (ii) कृषि के लिए प्रभाव आधारित पूर्वानुमान (आईबीएफ), (भारी वर्षा/तेज हवाओं के साथ आंधी/शीत लहर/ओलावृष्टि) और आईबीएफ पर आधारित कृषि मौसम संबंधी सलाह विभिन्न राज्यों और केंद्रशासित प्रदेशों के विभिन्न जिलों के लिए जारी की गई हैं। एनडब्ल्यूएफसी, नई दिल्ली, आरएमसी/एमसी, एएमएफयू और डीएएमयू के साथ समन्वय में देश।
- (ज) नई इनिशिएटिव अंडर ग्रामीण कृषि मौसम सेवा(जीकेएमएस)

ब्लॉक-स्तरीय कृषि मौसम संबंधी सलाह प्रदान करने के लिए जिला कृषि मौसम नेटवर्क का 130 से 329 तक विस्तार।

अधिकतम संख्या तक पहुंचने के लिए ब्लॉक स्तर पर मौसम पूर्वानुमान और सलाह जारी करने का लक्ष्य रखा गया है। किसान के घर का.

सलाहकार सृजन और फीडबैक संग्रह प्रणाली के स्वचालन के लिए उन्नत प्रौद्योगिकी-आधारित उपकरणों/तकनीकों का विकास।

सतह अवलोकन, भू-स्थानिक उत्पादों और फसल सिमुलेशन मॉडल का उपयोग करके गुणवत्ता एएएस में सुधार।

राष्ट्रीय चैनल डीडी किसान के माध्यम से कृषि मौसम संबंधी सलाह का निर्धारण

बिहार और झारखंड के क्षेत्रीय डीडी न्यूज़ चैनल के माध्यम से कृषि मौसम संबंधी सलाह का निर्धारण

5.3. स्थितीय खगोल विज्ञान सेवाएँ

स्वतंत्रता के समय, भारत में समय गणना की अलग-अलग पद्धतियों के साथ बड़ी संख्या में विभिन्न कैलेंडर थे। ये कैलेंडर भारत की समृद्ध और विविध राजनीतिक, सांस्कृतिक और ऐतिहासिक परंपराओं को दर्शाते हैं। प्रत्येक कैलेंडर प्रणाली के अपने फायदे और नुकसान थे। इसलिए, वैज्ञानिक दृष्टिकोण अपनाने और पूरे देश के लिए एक समान कैलेंडर विकसित करने की आवश्यकता थी।

भारत सरकार द्वारा नागरिक, सामाजिक और अन्य उद्देश्यों के लिए पूरे देश में कैलेंडर में एकरूपता रखना वांछनीय समझा गया। सरकार ने राष्ट्रीय अखंडता के हित के लिए सबसे सटीक आधुनिक खगोलीय डेटा के आधार पर एक एकीकृत राष्ट्रीय कैलेंडर विकसित करने की दृष्टि से नवंबर, 1952 में सीएसआईआर के तहत प्रोफेसर मेघनाद साहा की अध्यक्षता में एक कैलेंडर सुधार समिति नियुक्त की। समिति ने अधिकांश आधुनिक खगोलीय सूत्रों के साथ गणना की गई भारतीय पंचांग और समुद्री पंचांग, तिथि, नक्षत्र, योग आदि के समय और त्योहार की तारीखों के साथ भारत का राष्ट्रीय कैलेंडर तैयार करने की सिफारिश की। इस कैलेंडर के लिए चुना गया युग शक संवत था। समिति का काम 1 दिसंबर, 1955 से भारत मौसम विज्ञान विभाग ने अपने हाथ में ले लिया। यह

काम कोलकाता स्थित पोजिशनल एस्ट्रोनॉमी सेंटर नामक इकाई को सौंपा गया। यूनिट ने 1958 के लिए 'द इंडियन एस्ट्रोनॉमिकल इफेमेरिस' की तैयारी शुरू की, पहला अंक 1957 में प्रकाशित हुआ था। इसके साथ ही राष्ट्रीय पंचांग का पहला अंक (जिसमें सामान्य पंचांग मापदंडों के साथ राष्ट्रीय कैलेंडर का डेटा शामिल था, जो पूरे विश्व के लिए एक मानक पंचांग के रूप में काम करेगा) देश) की शुरुआत 1879 शक संवत (1957-58 ई.) से हुई थी।

आईएमडी के तहत स्थित पोजिशनल एस्ट्रोनॉमी सेंटर, कोलकाता एकमात्र राष्ट्रीय एजेंसी है जो आकाशीय पिंडों के स्थितिगत निर्देशांक पर डेटा युक्त इफेमेरिस के प्रकाशन पर काम कर रही है। केंद्र 14 भाषाओं में राष्ट्रीय पंचांग के प्रकाशन के माध्यम से नागरिक और धार्मिक उद्देश्यों के लिए राष्ट्रीय कैलेंडर तैयार करने के लिए भी जिम्मेदार है जो देश के मानक पंचांग के रूप में कार्य करता है और सही पंचांग डेटा के स्रोत के रूप में कार्य करता है। केंद्र और राज्य सरकारों द्वारा छुट्टियों की घोषणा के लिए केंद्र सभी समुदायों के लिए अखिल भारतीय त्योहारों की तारीखें भी तय करता है। इस प्रकार, केंद्र द्वारा किया गया कार्य अद्वितीय है और देश में कोई अन्य संगठन इस तरह का कार्य नहीं कर रहा है।

वर्तमान गतिविधियाँ

भारतीय खगोलीय पंचांग का प्रकाशन

सूर्योदय-सूर्यास्त, चंद्रोदय-चंद्रास्त की तालिकाएँ

भारतीय राष्ट्रीय कैलेंडर तैयार करना

राष्ट्रीयपंचांग का 14 भाषाओं हिंदी, अंग्रेजी, संस्कृत, उर्दू, असमिया, बंगाली, गुजराती, मराठी, पंजाबी, तमिल, तेलुगु, कन्नड, मलयालम और उडिया में प्रकाशन।

सरकारी संगठनों, गैर-सरकारी संगठनों, खगोलविदों, विभिन्न पंचांग निर्माताओं, आम जनता आदि सहित बड़ी संख्या में उपयोगकर्ताओं की डेटा आवश्यकताओं को पूरा करने के लिए डेटा की आपूर्ति।

समय-समय पर अपनी पोर्टेबल दूरबीनों की सहायता से विशेष खगोलीय घटनाओं पर अवलोकन लेता रहता है।

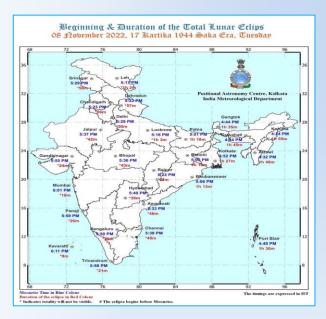
वर्ष 2022 के दौरान गतिविधियाँ

वर्ष 2023 के लिए भारतीय खगोलीय पंचांग, पोजिशनल एस्ट्रोनॉमी सेंटर का वार्षिक प्रकाशन, हार्ड कॉपी और सॉफ्ट कॉपी दोनों प्रारूपों में प्रकाशित किया गया है। प्रकाशन में मुख्य रूप से विभिन्न खगोलीय समन्वय प्रणाली में सूर्य, चंद्रमा और ग्रहों की स्थिति संबंधी डेटा शामिल है; सूर्य और चंद्रमा के उदय और अस्त होने का समय; चमकीले तारों के माध्य और स्पष्ट स्थान; खगोलीय घटनाओं की डायरी; ग्रहण और गुप्तता डेटा; कैलेंड्रिक डेटा; व्याख्यात्मक पाठ और खगोल विज्ञान पर अन्य उपयोगी जानकारी।

1944 शक संवत (2022-23 ई.) का राष्ट्रीयपंचांग 14 भाषाओं में हार्ड कॉपी और सॉफ्ट कॉपी दोनों प्रारूप में प्रकाशित किया गया है। ये पंचांग, पंचांग निर्माताओं और अन्य उपयोगकर्ताओं की दैनिक जरूरतों को पूरा करने वाले केंद्र के महत्वपूर्ण नियमित प्रकाशन हैं। इस प्रकाशन में केंद्रीय बिंदु (82°30' पूर्व, 23°11' उत्तर) के लिए गणना की गई आईएसटी में तिथि, नक्षत्र, योग और करण शामिल हैं; चंद्र महीने अमावस्या के अंतिम क्षण से शुरू होते हैं-पारंपरिक चंद्र-सौर व्यवस्था; देशांतर की सारणी, लग्न की शुरुआत, विभिन्न राशियों और नक्षत्रों में सूर्य, चंद्रमा और ग्रहों का पारगमन; सभी समुदायों के लिए अखिल भारतीय मेले और त्यौहार; सूर्योदय-सूर्यास्त और चंद्रोदय-चंद्रास्त की तालिकाएँ।

वर्ष 2022 के दौरान 2023 के लिए सूर्योदय-सूर्यास्त, चंद्रोदय-चंद्रास्त की तालिकाएँ प्रकाशित की गई हैं।

केंद्र द्वारा राष्ट्रीयपंचांग और भारतीय खगोलीय पंचांग के 14 भाषा संस्करणों के इलेक्ट्रॉनिक संस्करणों का निर्माण करके वेब आधारित सेवा जारी रखी गई है, जिसे उपयोगकर्ताओं द्वारा पीएसी कोलकाता वेबसाइट के माध्यम से एक्सेस किया जा सकता है।

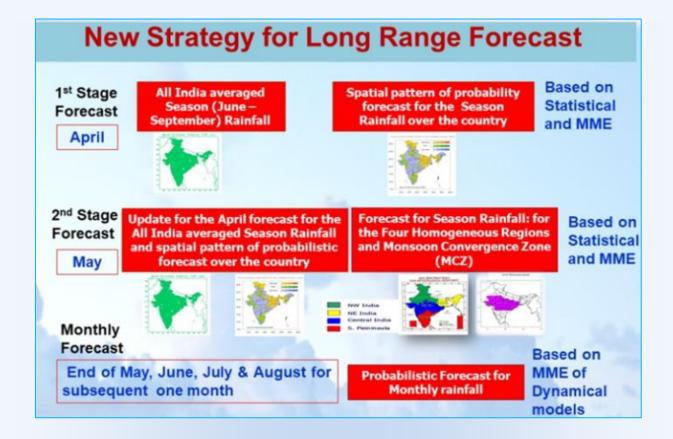

2022 के सभी 12 महीनों के लिए मासिक तारा चार्ट और खगोलीय बुलेटिन केंद्र द्वारा रात के आकाश में खगोलीय पिंडों के अवलोकन पर सहायक मार्गदर्शन प्रदान करने के उद्देश्य से तैयार किया गया है। बुलेटिन में आकाशीय रेखाचित्रों के साथ-साथ आकाश में वस्तुओं की स्थिति की संक्षिप्त व्याख्या शामिल है, जिसका उपयोग व्यावहारिक प्रदर्शनों के लिए किया जा सकता है।

भारत सरकार एवं अन्य राज्य सरकारों द्वारा वर्ष 2023 में सभी समुदायों के लिए अखिल भारतीय त्यौहारों पर छुट्टियों की घोषणा पूर्व में ही निर्धारित कर दी गई है। वर्ष 2023-24 के लिए ग्रेगोरियन कैलेंडर डेटा के साथ भारतीय राष्ट्रीय कैलेंडर का कैलेंडर डेटा विभिन्न हितधारकों के लिए पहले से तैयार किया गया है। अग्रिम पंचांग डेटा तैयार किया गया है और विभिन्न हितधारकों को प्रदान किया गया है।

भारत में दिखाई देने वाले 2022 के ग्रहण की घटना के लिए मीडिया के लिए पहले से ही प्रेस बुलेटिन जारी कर दिया गया है।

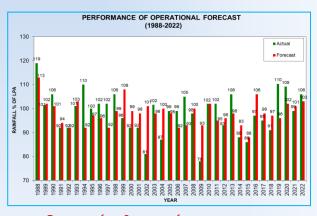
अवलोकन

8 नवंबर, 2022 (17वां कार्तिक, 1944 शक संवत) को पूर्ण चंद्रग्रहण को पीएसी, कोलकाता भवन की छत से 14-इंच, 12-इंच और 6-इंच दूरबीनों की मदद से देखा गया। ग्रहण के आंशिक (अम्ब्रल) चरण की शुरुआत (1439 IST पर) और कुल चरण (1546 IST पर) दिखाई नहीं दे रहे थे क्योंकि घटना चंद्रोदय से पहले (1652 IST पर) हुई थी। बादल छाए रहने के कारण ग्रहणग्रस्त चंद्रमा के उदय की घटना को पीएसी की दूरबीन से नहीं देखा जा सका। हालाँकि, कुल चरण (1712 IST पर) और आंशिक (अम्ब्रल) चरण (1819 IST पर) दोनों को पीएसी छत से सफलतापूर्वक देखा गया और दोनों घटनाओं के घटित होने का समय इस केंद्र में गणितीय रूप से गणना किए गए समय से मेल खाता है।



5.4. जलवाय् अनुसंधान एवं सेवाएँ

(i) परिचालन लंबी दूरी का पूर्वानुमान और उसका सत्यापन


परिचालन एलआरएफ प्रणाली

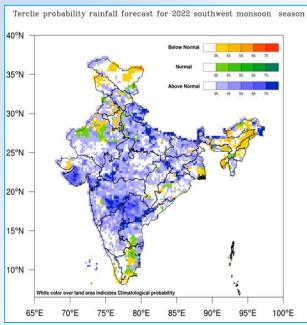
भारत मौसम विज्ञान विभाग (आईएमडी) उपयोगी कौशल (राजीवन एट अल., 2007, पै एट अल., 2011) के साथ नवीनतम सांख्यिकीय तकनीकों पर आधारित मॉडल का उपयोग करके दक्षिण-पश्चिम मानसून वर्षा के लिए परिचालन मासिक और मौसमी पूर्वानुमान जारी करता है। 2021 से, आईएमडी ने मौजूदा दो चरण की पूर्वानुमान रणनीति को संशोधित करके देश में दक्षिण-पश्चिम मानसून वर्षा के लिए मासिक और मौसमी परिचालन पूर्वानुमान जारी करने के लिए एक नई रणनीति अपनाई है। योजनाबद्ध आरेख (चित्र 1) आईएमडी द्वारा जारी दक्षिण पश्चिम मानसून वर्षा के लिए विभिन्न परिचालन पूर्वानुमान दिखा रहा है। नई रणनीति मौजूदा सांख्यिकीय पूर्वानुमान दिखा रहा है। नई रणनीति मौजूदा सांख्यिकीय पूर्वानुमान प्रणाली और नव विकसित मल्टी-मॉडल एन्सेम्बल (एमएमई) आधारित पूर्वानुमान प्रणाली पर आधारित है। एमएमई इष्टिकोण आईएमडी के मानसून मिशन जलवाय पूर्वानुमान प्रणाली

(एमएमसीएफएस) मॉडल सहित विभिन्न वैश्विक जलवाय् भविष्यवाणी और अनुसंधान केंद्रों से युग्मित वैश्विक जलवाय् मॉडल (सीजीसीएम) का उपयोग करता है। देश भर में मौसमी वर्षा (जून से सितंबर) के लिए टर्सिल श्रेणियों (सामान्य से ऊपर, सामान्य और सामान्य से नीचे) के लिए संभाव्य पूर्वानुमानों का स्थानिक वितरण भी पहली बार एमएमई दृष्टिकोण के आधार पर पिछले महीने के अंत में जारी किया गया था। देश में परिचालन मौसमी पूर्वान्मान का इतिहास। इसके अलावा, आईएमडी मानसून कोर जोन (एमसीजेड) के लिए एक अलग पूर्वान्मान विकसित करने का भी प्रयास कर रहा है, जो देश के अधिकांश वर्षा आधारित कृषि क्षेत्र का प्रतिनिधित्व करता है। एमसीजेड के लिए एक अलग पूर्वान्मान कृषि योजना और फसल उपज अनुमान आदि के लिए अधिक उपयोगी होगा। आईएमडी एमएमई प्रणाली और एक नए सांख्यिकीय मॉडल के आधार पर एमसीजेड के लिए एक अलग संभाव्य पूर्वानुमान जारी करेगा।

इस रिपोर्ट में आईएमडी द्वारा जारी किए गए विभिन्न लंबी अविध के पूर्वानुमानों और उनके सत्यापन के विवरण पर चर्चा की गई है। आईएमडी द्वारा जारी किए गए विभिन्न परिचालन पूर्वानुमान जैसा कि तालिका 1 में दिखाया गया है और प्रदर्शन परिचालन पूर्वानुमान (1988-2022) चित्र 2 में दिखाया गया है।

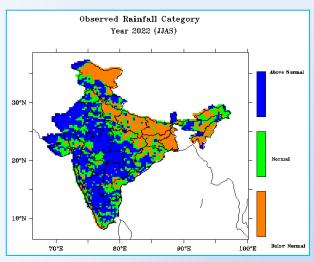
चित्र 2. प्रदर्शन परिचालन पूर्वान्मान (1988-2022)

तालिका 1 आईएमडी द्वारा जारी विभिन्न लंबी अवधि के पूर्वानुमानों का विवरण


S.No.	Forecast for	Region for which forecast issued	Method/Model
1	Monthly outlook for rainfall and temperatures during February 2022	North India consisting of seven meteorological subdivisions (East Uttar Pradesh, West Uttar Pradesh, Uttarakhand, Haryana, Chandigarh & Delhi, Punjab, Himachal Pradesh, Jammu Kashmir & Ladakh) and spatial rainfall probability forecast	ММЕ
2	Seasonal (March-May) and Monthly (March) 2022 Outlook for the Rainfall and Temperatures	Country as a Whole	MME
3	Long Range Forecast for the 2022 Southwest Monsoon Season Rainfall	Country as a Whole	Statistical & MME
4	Monthly Outlook for the Temperature and Rainfall during May 2022	Country as a Whole	MME
5	Forecast of the Onset Date of Southwest Monsoon - 2022 over Kerala	Over Kerala	MME
6	Updated Long Range Forecast of Rainfall during Southwest Monsoon Season (June - September), 2022 and Monthly Outlook for Rainfall and Temperature during June 2022	Country as a Whole,	Statistical & MME
7	Forecast outlook for rainfall and temperatures during the month of July 2022 of Southwest monsoon season	Country as a Whole	MME
8	Forecast outlook for rainfall and temperatures during the month of August and August-September 2022 of Southwest monsoon season.	Country as a Whole	MME
9	Forecast outlook for rainfall and temperatures for the Month of September 2022	Country as a Whole	MME
10	Forecast outlook for rainfall and temperatures for Post-monsoon Season (OCT-DEC) 2022	South Peninsular India	MME
11	Salient Features of Monsoon 2022	Country as a Whole	
12	Long Range Forecast for rainfall and temperature for November 2022	Country as a Whole	MME
13	Seasonal Outlook for Winter Temperatures and Rainfall and Temperature Forecast for December 2022	Country as a Whole	MME

परिचालन लंबी दूरी के पूर्वान्मानों का सत्यापनः

दक्षिण-पश्चिम मॉनसून सीज़न (जून से सितंबर, 2022) वर्षा


तालिका 1. वास्तविक वर्षा के साथ-साथ 2022 दक्षिण-पश्चिम मानसून वर्षा के लिए जारी किए गए विभिन्न परिचालन दीर्घकालिक पूर्वानुमानों का सारांश देती है।

पूरे देश में सीज़न (जून-सितंबर) के लिए अप्रैल में जारी किए गए पहले चरण का पूर्वानुमान एलपीए का 99% था, जिसमें एलपीए की ± 5% की मॉडल त्रुटि थी। इस पूर्वानुमान के लिए मई में जारी किया गया अद्यतन (एलपीए का 103%) एलपीए के ± 4% की मॉडल त्रुटि के साथ था। पूरे देश में वास्तविक सीज़न वर्षा एलपीए का 106% थी, जो अप्रैल और जून के पूर्वानुमानों से क्रमशः एलपीए का 7% और 3% अधिक है। इस प्रकार, अप्रैल का पूर्वानुमान ऊपरी पूर्वानुमान सीमा के भीतर वाहीं था, लेकिन अद्यतन पूर्वानुमान ऊपरी सीमा के भीतर था

चित्र 1(ए). जेजेएएस 2022 के लिए टर्सिल श्रेणियों के लिए संभावित वर्षा पूर्वान्मानों का स्थानिक वितरण

और वास्तविक वर्षा मूल्य को कम करके आंका गया था। मौसमी वर्षा (जून से सितंबर) के लिए टर्सिल श्रेणियों (सामान्य से ऊपर, सामान्य और सामान्य से नीचे) के लिए संभाव्य पूर्वानुमानों का स्थानिक वितरण चित्र 1 (ए) में दिखाया गया है और देखी गई वर्षा श्रेणी चित्र 1 (बी) में दी गई है।

चित्र 1 (बी). 2022 मानसून सीज़न के लिए प्रेक्षित वर्षा श्रेणी का स्थानिक वितरण

भारत के चार व्यापक भौगोलिक क्षेत्रों को ध्यान में रखते हुए, उत्तर पश्चिम भारत, मध्य भारत, पूर्वोत्तर भारत और दक्षिण प्रायद्वीप में मौसमी वर्षा के लिए 31 मई को जारी किए गए पूर्वानुमान सामान्य (एलपीए का 92-108%), सामान्य से ऊपर

(एलपीए का 106%) थे।), सामान्य [एलपीए का 96-106%)] और सामान्य से ऊपर (एलपीए का 106%)। मॉनसून कोर जोन (एमसीजेड) पर नई शुरू की गई मौसमी वर्षा सामान्य से अधिक (एलपीए का 106%) होने का अन्मान लगाया गया था। उत्तर पश्चिम भारत, मध्य भारत, पूर्वोत्तर भारत, दक्षिण प्रायद्वीप और मानसून कोर ज़ोन में वास्तविक वर्षा एलपीए की क्रमशः 101%, 119%, 82%, 122% और 120% थी। जून, ज्लाई, अगस्त और सितंबर के लिए जारी मासिक पूर्वान्मान सामान्य थे [दीर्घकालिक औसत (एलपीए) का 92-108%], सामान्य [दीर्घकालिक औसत (एलपीए) का 94 से 106%], सामान्य [94-106% लंबी अवधि का औसत (एलपीए)] और सामान्य से ऊपर [>लंबी अवधि के औसत (एलपीए) का 91-109%] क्रमशः। पूरे देश में जून में वास्तविक वर्षा एलपीए की 92% थी, ज्लाई में एलपीए की 117% थी, अगस्त में एलपीए की 103% थी जबकि सितंबर में एलपीए की 108% थी। पूरे देश के लिए मानसून सीज़न की दूसरी छमाही (अगस्त-सितंबर) का पूर्वान्मान सामान्य था [दीर्घकालिक औसत (एलपीए) का 94 से 106%] जबिक वास्तविक वर्षा एलपीए का 105% थी। जुलाई के लिए जारी मासिक पूर्वान्मान को कम आंका गया था और अगस्त पूर्वानुमान की सीमा के भीतर था जबकि सितंबर पूर्वानुमान की सीमा से थोड़ा नीचे था। पूरे देश के लिए मानसून सीज़न की दूसरी छमाही (अगस्त-सितंबर) का पूर्वानुमान पूर्वान्मान सीमा के भीतर था।

तालिका 2 2022 दक्षिण पश्चिम मानसून वर्षा के लिए जारी परिचालन पूर्वानुमान का सत्यापन

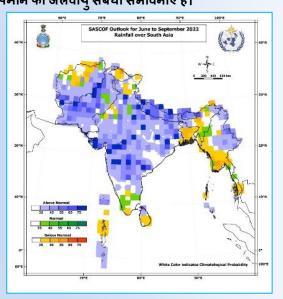
Region	Period	Forecast (% of LPA)	Actual Rainfall
Kegion	renou		(% of LPA)
		(Issued on 14 th April)	
All India	June to September	Normal (96-104% of LPA) 99± 5 of LPA	106.5
		(Issued on 31st May)	
All India	June to September	Normal (96-104% of LPA) 103± 4 of LPA	106.5
Northwest India	June to September	Normal (92-108% of LPA)	101
Central India	June to September	Above Normal (>106% of LPA)	119
Northeast India	June to September	Normal (96-106% of LPA)	83
South Peninsula	June to September	Above Normal (>106% of LPA)	122
Monsoon Core Zone	June to September	Above Normal (>106% of LPA)	120
All India	June	Normal (92-108% of LPA)	92
All India	July (issued on 1st July)	July: Normal (94-106% of LPA	116.8
All India	August & Aug-Sept	August: Normal (94-106% of LPA	103.5
	(issued on 1 st Aug)	Aug+Sept: Normal (94-106% of LPA)	105
All India	September (issued on 1 st Sept)	Above Normal (>91-109% of LPA)	108

(॥) क्षेत्रीय जलवाय् केंद्र (आरसीसी) गतिविधियाँ:

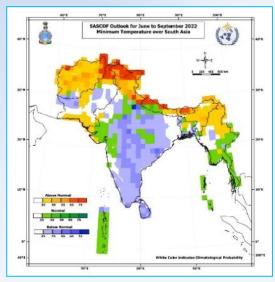
आईएमडी, पुणे के सीआरएस कार्यालय को दक्षिण एशिया के लिए डब्लूएमओ क्षेत्रीय जलवायु केंद्र (आरसीसी) के रूप में भी मान्यता प्राप्त है। वर्तमान में एमएमसीएफएस का उपयोग निम्नलिखित आरसीसी लंबी दूरी की पूर्वानुमान गतिविधियों के लिए किया जाता है।

(ए) तापमान और वर्षा के लिए वैश्विक मासिक और मौसमी (विसंगति और संभावना) पूर्वानुमान तैयार करें। इसे हर महीने अपडेट किया जाता है.

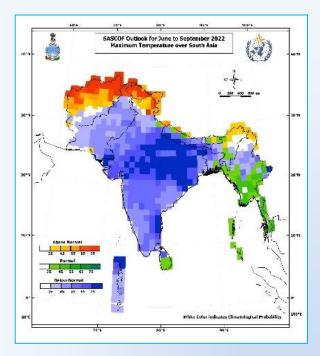
(बी) मासिक अद्यतन के साथ अगले 2 चलती 3-महीने सीज़न (कुल 4 महीने) के लिए दक्षिण एशिया में वर्षा और तापमान के लिए मौसमी जलवायु आउटलुक तैयार करें।


(सी) मासिक अद्यतन के आधार पर तैयार किए गए अगले 9 महीनों के लिए ईएनएसओ और आईओडी स्थितियों पर जोर देने के साथ वैश्विक एसएसटी विसंगतियों और संभावनाओं के पूर्वानुमान पर विवरण प्रदान करते हुए हर महीने ईएनएसओ और आईओडी बुलेटिन तैयार करें।

(डी) दक्षिण एशिया में मानसून सीजन की बारिश, पूर्वोत्तर मानसून की बारिश और सर्दियों की बारिश के लिए सर्वसम्मित पूर्वानुमान दृष्टिकोण तैयार करने में अग्रणी भूमिका निभाएं। (ई) आरए ॥ क्षेत्र के लिए दक्षिण एशिया जलवायु मंच गतिविधियों के संचालन में अग्रणी केंद्र के रूप में कार्य करना और ग्रीष्मकालीन मानसून, पूर्वोत्तर मानसून और दिसंबर से फरवरी (डीजेएफ) सीज़न के लिए दक्षिण एशियाई क्षेत्र के लिए आम सहमति दृष्टिकोण तैयार करने के लिए एसएएससीओएफ का संचालन करना। वर्ष 2022 के दौरान, ऐसे तीन SASCOF कार्यक्रम आयोजित किए गए (SASCOF 22, SASCOF 23, और SASCOF 24)।

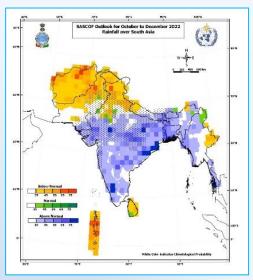

एसएएससीओएफ 22 का सारांश:

दक्षिण एशिया के अधिकांश हिस्सों में 2022 दक्षिण-पश्चिम मानसून सीज़न (जून-सितंबर) के दौरान सामान्य से सामान्य से अधिक वर्षा होने की संभावना है। भौगोलिक दृष्टि से, हिमालय की तराई की पहाड़ियों, क्षेत्र के उत्तर-पश्चिमी और मध्य भागों के कई क्षेत्रों और क्षेत्र के पूर्व और दक्षिणी भागों के कुछ क्षेत्रों में सामान्य से अधिक वर्षा होने की संभावना है। हालाँकि, क्षेत्र के सुदूर उत्तर, उत्तर-पश्चिम और दक्षिण तथा दिक्षण-पूर्वी भागों के कुछ क्षेत्रों में सामान्य से कम वर्षा होने की संभावना है। क्षेत्र के शेष क्षेत्रों में मौसमी वर्षा सामान्य या जलवायु संबंधी संभावनाओं के अनुरूप होने की अधिक संभावना है।

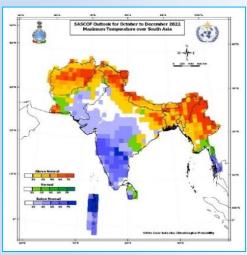

सीज़न के दौरान, हिमालय की तलहटी, उत्तरी, उत्तर-पश्चिमी और दक्षिण एशिया के उत्तरपूर्वी हिस्सों के कई क्षेत्रों में सामान्य से अधिक न्यूनतम तापमान होने की संभावना है। दक्षिण एशिया के मध्य, दक्षिणी और दक्षिण-पूर्वी भाग के अधिकांश क्षेत्रों में न्यूनतम तापमान सामान्य से नीचे रहने की संभावना है। क्षेत्र के शेष भागों में मौसमी न्यूनतम तापमान की जलवायु संबंधी संभावनाएँ हैं। चरम उत्तर-पश्चिम और क्षेत्र के उत्तरी और उत्तरपूर्वी भागों के कुछ क्षेत्रों को छोड़कर, क्षेत्र के अधिकांश हिस्सों में मौसमी अधिकतम तापमान सामान्य से सामान्य से नीचे रहने की संभावना है। क्षेत्र के शेष भागों में अधिकतम तापमान की जलवायु संबंधी संभावनाएँ हैं।

दक्षिण एशिया में 2022 दक्षिण पश्चिम मानसून वर्षा के लिए सबसे संभावित श्रेणी की संभावना

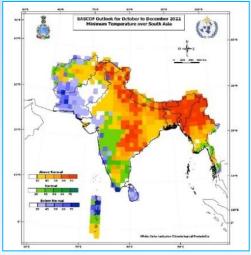
मानसून सीज़न (जून से सितंबर 2022) न्यूनतम तापमान और दक्षिण एशिया के लिए आम सहमति दृष्टिकोण



मानसून सीज़न (जून से सितंबर 2022) अधिकतम तापमान और दक्षिण एशिया के लिए आम सहमति दृष्टिकोण

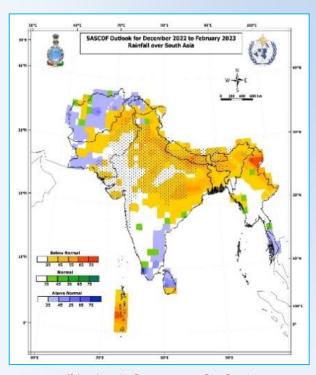

एसएएससीओएफ 23 का सारांश

अक्टूबर-दिसंबर (ओएनडी) सीज़न 2022 के दौरान दक्षिण एशिया के चरम दक्षिणी हिस्सों में द्वीपों सहित सामान्य से कम वर्षा होने की संभावना है, जहां जलवायु के अनुसार हमें सीज़न के दौरान अच्छी मात्रा में वर्षा प्राप्त होती है। दक्षिण एशिया के उत्तर-पश्चिमी हिस्सों के साथ-साथ दक्षिण एशिया के चरम पूर्वी हिस्सों में भी सामान्य से कम वर्षा होने की संभावना है, जहां आमतौर पर ओएनडी सीज़न के दौरान बहुत कम वर्षा होती है। पश्चिम, मध्य और पूर्वोत्तर क्षेत्रों के अधिकांश हिस्सों और दक्षिण एशिया के दक्षिणी हिस्सों के शेष क्षेत्र में सामान्य से अधिक वर्षा होने की संभावना है। क्षेत्र के शेष भाग में मौसमी वर्षा के लिए सामान्य या जलवायु संबंधी संभावना का अनुभव होने की संभावना है।

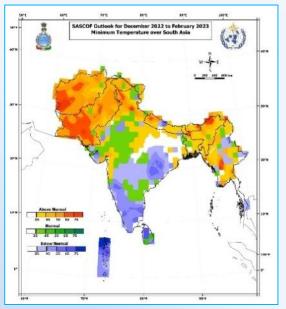

सीज़न के दौरान, हिमालय की तलहटी सहित दक्षिण एशिया के उत्तर-पश्चिम, उत्तर-पूर्व भागों में सामान्य से सामान्य से अधिक अधिकतम तापमान होने की संभावना है। दक्षिण एशिया के पश्चिम, मध्य और दक्षिणी हिस्सों में अधिकतम तापमान सामान्य से नीचे रहने की संभावना है। दक्षिण एशिया के पश्चिम, उत्तर-पश्चिम और दक्षिणी हिस्सों को छोड़कर क्षेत्र के अधिकांश हिस्सों में न्यूनतम तापमान सामान्य से ऊपर रहने की संभावना है।

2022 अक्टूबर से दिसंबर सीज़न के लिए आउटलुक दक्षिण एशिया में वर्षा। मानचित्र में दिखाए गए बिंदीदार क्षेत्र में जलवायु संबंधी दृष्टि से बहुत कम वर्षा होती है और ओएनडी सीज़न के दौरान शुष्क मौसम का अनुभव होता है

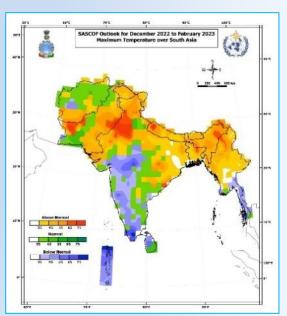
अक्टूबर से दिसंबर सीज़न 2022 के लिए दक्षिण एशिया में अधिकतम तापमान का आउटलुक


अक्टूबर से दिसंबर सीज़न 2022 के लिए दक्षिण एशिया में न्यूनतम तापमान का आउटलुक

एसएएससीओएफ 24 का सारांश


सर्दियों के मौसम (दिसंबर 2022 से फरवरी 2023) के दौरान दक्षिण एशिया के कई क्षेत्रों जैसे उत्तर, उत्तर पश्चिम, हिमालय की तलहटी के साथ-साथ और दक्षिण एशिया के उत्तरपूर्वी हिस्से में सामान्य से कम वर्षा होने की संभावना है। सुदूर उत्तर पश्चिम क्षेत्र और दक्षिण एशिया के दक्षिणी भाग के कुछ क्षेत्रों में सामान्य से अधिक वर्षा होने की संभावना है।

सीज़न के दौरान, उत्तर, उत्तर-पश्चिमी, उत्तर-पूर्व और हिमालय के मैदानी इलाकों के कई इलाकों में सामान्य से अधिक न्यूनतम तापमान होने की संभावना है। हालाँकि, क्षेत्र के मध्य और दक्षिणी भागों के कुछ क्षेत्रों में न्यूनतम तापमान सामान्य से नीचे रहने की संभावना है।


उत्तर, उत्तर-पश्चिम, उत्तर-पूर्व क्षेत्रों और हिमालय के आसपास सामान्य से सामान्य से अधिक अधिकतम तापमान होने की संभावना है। मध्य और दक्षिणी क्षेत्रों के कुछ हिस्सों में अधिकतम तापमान सामान्य से नीचे रहने की संभावना है।

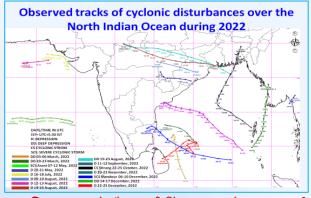
सर्दी के मौसम के लिए आम सहमति दृष्टिकोण (दिसंबर 2022 से फरवरी 2023) वर्षा दक्षिण एशिया पर. बिंदीदार क्षेत्र दिखाया गया है मानचित्र जलवायु विज्ञान की दृष्टि से बहुत प्राप्त होता है कम वर्षा और शुष्क मौसम का अनुभव डीजेएफ सीजन के दौरान

सर्दियों के मौसम के लिए आम सहमति दृष्टिकोण (दिसंबर 2022 से फरवरी 2023) दक्षिण एशिया में न्यूनतम तापमान

सर्दियों के मौसम के लिए आम सहमति दृष्टिकोण (दिसंबर 2022 से फरवरी 2023) दक्षिण एशिया में अधिकतम तापमान

5.5. चक्रवात निगरानी एवं भविष्यवाणी

5.5.1. 2022 के दौरान उत्तरी हिंद महासागर के ऊपर चक्रवाती विक्षोभ की मुख्य विशेषताएं


वर्ष 2022 के दौरान उत्तरी हिंद महासागर (एनआईओ) पर चक्रवाती विक्षोभ (सीडी) की मुख्य विशेषताएं, भारत मौसम विज्ञान विभाग (आईएमडी) का परिचालन पूर्वानुमान प्रदर्शन और वर्ष के दौरान नई पहल नीचे प्रस्तुत की गई हैं:

1. एनआईओ पर सीडी की मुख्य विशेषताएं।

2022 के दौरान एनआईओ में निम्नलिखित सीडी विकसित की गई:

- (i) 03-06 मार्च, 2022 के दौरान बंगाल की खाड़ी पर गहरा दबाव
- (ii) 20-23 मार्च, 2022 के दौरान उत्तरी अंडमान सागर पर गहरा दबाव
- (iii) 07-12 मई, 2022 के दौरान बंगाल की खाड़ी के ऊपर गंभीर चक्रवाती तूफान असानी
- (iv) 20-21 मई, 2022 के दौरान बंगाल की खाड़ी पर दबाव
- (v) 16-18 जुलाई, 2022 के दौरान अरब सागर पर दबाव
- (vi) 09-10 अगस्त, 2022 के दौरान तटीय ओडिशा पर दबाव
- (vii) 12-13 अगस्त, 2022 के दौरान अरब सागर पर दबाव
- (viii) 14-16 अगस्त, 2022 के दौरान बंगाल की खाड़ी पर दबाव
- (ix) 19-23 अगस्त, 2022 के दौरान बंगाल की खाड़ी पर गहरा दबाव
- (x) 11-12 सितंबर, 2022 के दौरान दक्षिण ओडिशा पर दबाव
- (xi) 22-25 अक्टूबर, 2022 के दौरान बंगाल की खाड़ी के ऊपर चक्रवाती तूफान सितारंग
- (xii) 20-22 नवंबर, 2022 के दौरान बंगाल की खाड़ी पर दबाव
- (xiii) 06-10 दिसंबर, 2022 के दौरान बंगाल की खाड़ी के ऊपर गंभीर चक्रवाती तूफान मैंडोस
- (xiv) 14-17 दिसंबर, 2022 के दौरान अरब सागर पर गहरा दबाव
- (xv) 22-25 दिसंबर, 2022 के दौरान बंगाल की खाड़ी पर दबाव

2022 के दौरान सीडी के देखे गए ट्रैक चित्र 1 में प्रस्तुत किए गए हैं।

चित्र 1. 2022 के दौरान उत्तरी हिंद महासागर के ऊपर चक्रवाती विक्षोभ के ट्रैक

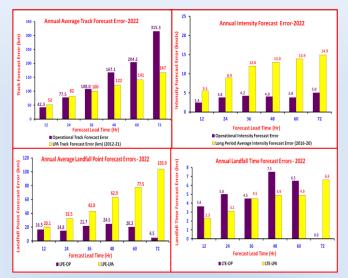
- सीडी की वार्षिक आवृत्तिः 2022 के दौरान, प्रति वर्ष 11.2
 के सामान्य (1965-2021 के दौरान) के मुकाबले एनआईओ पर
 15 सीडी (अधिकतम निरंतर हवा की गति (एमएसडब्ल्यू) ≥ 17
 समुद्री मील) विकसित हुई। इस प्रकार, वर्ष 2022 के दौरान सीडी के गठन की वार्षिक गतिविधि सामान्य से ऊपर थी।
- सीडी की विभिन्न श्रेणियों की आवृतिः 12 अवसाद और गहरे अवसाद थे (एमएसडब्ल्यूः 17-33 समुद्री मील) (सामान्यः 6.5 प्रति वर्ष), 1 चक्रवाती तूफान (एमएसडब्ल्यूः 34-47 समुद्री मील) (सामान्यः 1.8 प्रति वर्ष) और 2 वर्ष 2022 के दौरान गंभीर चक्रवाती तूफान (MSW: 48-63 नॉट) (सामान्यः 2.9 प्रति वर्ष)। 2022 के दौरान NIO पर कुल 3 चक्रवात (MSW≥ 34 नॉट) विकसित हुए, जबिक सामान्य रूप से प्रति वर्ष 4.7 थे। कुल मिलाकर, 2022 के दौरान क्षेत्र में अवसादों के बनने की आवृति सामान्य से ऊपर थी और चक्रवातों के बनने की आवृति सामान्य से कम थी।
- बंगाल की खाड़ी और अरब सागर के ऊपर सीडी की आवृति: अरब सागर के ऊपर 3 सीडी (सामान्य: 2.3 प्रति वर्ष), बंगाल की खाड़ी के ऊपर 10 (सामान्य: 7.8 प्रति वर्ष) और भूमि पर 2 (सामान्य: 1.1 प्रति वर्ष) थीं। 2022. सीडी के गठन के संबंध में बेसिन-वार गतिविधि बंगाल की खाड़ी, अरब सागर और भूमि पर सामान्य से ऊपर थी।
- बंगाल की खाड़ी (बीओबी) और अरब सागर (एएस) पर चक्रवातों की आवृत्ति: बीओबी पर 3 चक्रवात विकसित हुए और एएस पर शून्य, जबिक बीओबी और एएस पर क्रमशः 3.5 प्रति वर्ष और 1.2 प्रति वर्ष सामान्य है। इस प्रकार, दोनों बेसिनों पर सीएस के गठन की आवृत्ति औसत से कम थी।
- चक्रवातों की आवृत्ति के संबंध में अनूठी विशेषताएं: 2022 के दौरान, प्रति वर्ष 1.2 के सामान्य (1965-2020) के मुकाबले

एएस पर कोई चक्रवात विकसित नहीं हुआ। अतीत में, 1990, 1991, 1997, 2000, 2005, 2008, 2013, 2016, 2017 में AS पर कोई चक्रवात नहीं देखा गया था।

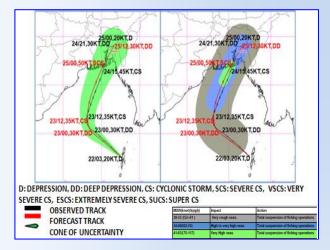
- चक्रवातों की तीव्रता के संबंध में अनूठी विशेषता: 2022 के दौरान कोई बहुत गंभीर चक्रवाती तूफान नहीं आया। आखिरी ऐसी गतिविधि 10 साल पहले 2012 में देखी गई थी, उसके बाद 2009, 2005, 2002, 1986 (1982-2021 की अविध के दौरान) देखी गई थी।
- विभिन्न मौसमों में सीडी की आवृत्तिः प्री-मानसून सीज़न (मार्च-मई) के दौरान 4 सीडी (सामान्यः 1.4 प्रति वर्ष), मानसून सीज़न (जून-सितंबर) के दौरान 6 सीडी (सामान्यः 4.9 प्रति वर्ष) और पोस्ट के दौरान 5 सीडी थीं। -मानसून सीज़न (अक्टूबर-दिसंबर) (सामान्यः 4.8 प्रति वर्ष)। प्री-मॉनसून सीज़न के दौरान सीज़न-वार गतिविधि सामान्य से ऊपर थी।
- आंदोलनः असानी ने कई पुनरावृत्तियों (आंदोलन की दिशा में महत्वपूर्ण परिवर्तन), बहुत धीमी गित और भूस्खलन से पहले कमजोर होने का प्रदर्शन किया। सीतरंग ने पुनरावर्ती ट्रैक का अनुसरण किया, भूस्खलन से पहले बहुत तेज़ गित और बहुत कम जीवन अविध। मैंडौस ने भी आवर्ती पथ और धीमी गित का अनुसरण किया। इस प्रकार, 2022 के दौरान सभी 3 टीसी में रिकर्विंग ट्रैक थे और लैंडफॉल से पहले और उसके दौरान धीमी या तेज गित थी और तीन में से दो चक्रवातों में लैंडफॉल से पहले कमजोर होने की प्रवृत्ति थी।
- भूस्खलनः सभी 3 चक्रवात भूस्खलन प्रणाली थे
 (सामान्यः 3.2 प्रति वर्ष)। हालाँकि, हिलेअसानी ने एक गहरे
 अवसाद के रूप में तट को पार किया, सीतारंग और मंडौस ने चक्रवाती तूफान के रूप में तट को पार किया।
- वार्षिक संचित चक्रवात ऊर्जा: 2022 के दौरान चक्रवातों के साथ वार्षिक संचित चक्रवात ऊर्जा (नुकसान की संभावना का एक माप) (ए) के (1982-2020) के आंकड़ों के आधार पर लंबी अविध के औसत (एलपीए) के मुकाबले 6.37 × 104 समुद्री मील 2 थी। BoB पर चक्रवातों के लिए 14.41 × 104 नॉट 2, (बी) एएस पर 6.77 × 104 नॉट 2 और (सी) एनआईओ पर 21.18 × 104 नॉट 2। इस प्रकार, 2022 के दौरान चक्रवातों से होने वाली क्षति की संभावना बीओबी, एएस और एनआईओ पर वार्षिक औसत की त्लना में कम थी।
- विद्युत अपव्यय सूचकांक: 2022 के दौरान चक्रवातों के संबंध में वार्षिक विद्युत अपव्यय सूचकांक (नुकसान का एक

- उपाय) एलपीए के मुकाबले 3.04 × 106 नॉट3 था, जो (1982-2020) के आंकड़ों के आधार पर (ए) चक्रवातों के लिए 9.51 × 106 नॉट3 था। बीओबी, (बी) एएस पर 4.57 × 106 नॉट3 और एनआईओ पर (सी) 14.08 × 106 नॉट 3। इस प्रकार, 2022 के दौरान चक्रवातों के कारण होने वाले नुकसान का माप बीओबी, एएस और एनआईओ पर वार्षिक औसत की त्लना में कम था।
- कुल जीवन अविधः 2022 के दौरान एनआईओ पर सीडी दिनों की कुल संख्या 29 दिन और 20 घंटे के एलपीए (1990-2020 के दौरान डेटा के आधार पर) के मुकाबले 2022 के दौरान 39 दिन और 9 घंटे थी। यह मुख्य रूप से किसी भी सीडी की लंबी जीवन अविध के बजाय अवसाद/गहरे अवसाद की बढ़ती आवृत्ति के कारण था।
- औसत ट्रांसलेशनल गति: 2022 के दौरान चक्रवातों की छह घंटे की औसत ट्रांसलेशनल गति एलपीए के मुकाबले 15.5 किमी प्रति घंटे थी (1990-2020 के दौरान डेटा के आधार पर) बीओबी पर चक्रवातों के लिए ट्रांसलेशनल गति 13.9 किमी प्रति घंटा थी। यह लगभग सामान्य था.
- पुनरावर्ती ट्रैक और पूर्वानुमान में बढ़ी हुई कठिनाई स्तर के बावजूद, उत्पत्ति, ट्रैक, लैंडफॉल बिंदु, लैंडफॉल समय और तीव्रता और भारी वर्षा, हवा और तूफान सहित संबंधित प्रतिकूल मौसम सहित सभी मापदंडों की पर्याप्त लीड अवधि के साथ सटीक भविष्यवाणी की गई थी। इसने आपदा प्रबंधकों, हितधारकों और आम जनता को प्रतिक्रियात्मक कार्रवाई करने में सक्षम बनाया जिसके परिणामस्वरूप मरने वालों की संख्या में उल्लेखनीय कमी आई और क्षेत्र में चक्रवाती गड़बड़ी का प्रबंधन हुआ।
- परिचालन पूर्वानुमान प्रदर्शनः 2018-22 के दौरान औसत ट्रैक पूर्वानुमान त्रुटियां 24, 48 और 72 घंटों के लिए क्रमशः 75 किमी, 113 किमी और 154 किमी रही हैं, जबकि 2012-21 के दौरान 93, 144 और 201 किमी की औसत त्रुटियां थीं। 2018-22 के दौरान तीव्रता पूर्वानुमान में औसत त्रुटियां 24, 48 और 72 घंटे की पूर्वानुमान अविध के लिए क्रमशः 7.4 समुद्री मील, 10.5 समुद्री मील और 14.0 समुद्री मील रही हैं, जबकि 2012-21 के दौरान 10.4, 15.5 और 15.7 समुद्री मील की औसत त्रुटियां थीं। वर्ष 2022 के लिए वार्षिक औसत भूस्खलन बिंदु पूर्वानुमान त्रुटियां 24, 48 और 72 घंटे की लीड अविध के लिए 14.8 किमी, 24.5 किमी और 4.5 किमी रही हैं, जबकि पिछले पांच वर्षों में 2012-2021 के दौरान 30.7 किमी, 43.9 किमी और 85.7 किमी की औसत त्रुटियां थीं।

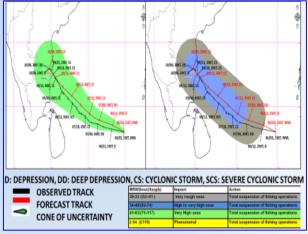
- ट्रैक और तीव्रता की भविष्यवाणी दोनों में सटीकता ने 2013-17 की तुलना में 2018-22 के दौरान 72 घंटे की लीड अविध तक 20-30% का समग्र सुधार दर्ज किया। 2013-17 की तुलना में 2018-22 के दौरान 72 घंटे की लीड अविध तक भूस्खलन बिंदु की भविष्यवाणी में सटीकता में 40-70% का समग्र सुधार दर्ज किया। या।
- मरने वालों की संख्या: 2022 के दौरान आए चक्रवातों के कारण भारत में कुल 5 मौतें हुईं और WMO/ESCAP पैनल के सदस्य देशों (जैसे बांग्लादेश और श्रीलंका) में 38 मौतें हुईं।


2. निगरानी और पूर्वानुमान

आईएमडी ने 2022 के दौरान सीडी की निगरानी और भविष्यवाणी के लिए अपने सभी संसाधनों का उपयोग किया। हमें आपको यह बताते हुए खुशी हो रही है कि सभी चक्रवाती गड़बड़ी की निगरानी की गई और पर्याप्त लीड समय और बड़ी सटीकता के साथ भविष्यवाणी की गई। आईएमडी ने एनआईओ पर निरंतर निगरानी बनाए रखी और अक्टूबर-दिसंबर के दौरान विस्तारित रेंज आउटल्क (अगले 15 दिनों के लिए वैध), दैनिक उष्णकिटबंधीय मौसम आउटल्क (अगले 5 दिनों के लिए वैध), दैनिक विस्तृत पूर्वानुमान और नैदानिक रिपोर्ट जारी करने के साथ सभी गड़बड़ियों की निगरानी की। अगले 7 दिनों के लिए) और चक्रवाती विक्षोभ अवधि के गठन पर 6 घंटे/3 घंटे/प्रति घंटे संरचित बुलेटिन। सीडी की निगरानी इन्सैट 3डी और 3डीआर से उपलब्ध उपग्रह अवलोकनों, ध्रुवीय परिक्रमा उपग्रहों, क्षेत्र में उपलब्ध जहाजों और बोया अवलोकनों, डॉपलर मौसम रडार (डीडब्ल्यूआर) और तटीय वेधशालाओं से अवलोकनों की मदद से की गई थी। आईएमडी, एनसीएमआरडब्ल्यूएफ, आईआईटीएम आईएनसीओआईएस सहित पृथ्वी विज्ञान मंत्रालय (एमओईएस) संस्थानों द्वारा संचालित विभिन्न वैश्विक मॉडल और गतिशील-सांख्यिकीय मॉडल का उपयोग सीडी की उत्पत्ति, ट्रैक, भूस्खलन और तीव्रता के साथ-साथ भारी वर्षा सहित संबंधित गंभीर मौसम की भविष्यवाणी करने के लिए किया गया था। , तेज़ हवाएँ और तूफ़ान। आईएमडी की एक डिजीटल पूर्वानुमान प्रणाली का उपयोग विभिन्न अवलोकनों और संख्यात्मक मौसम भविष्यवाणी मॉडल मार्गदर्शन, निर्णय लेने की प्रक्रिया और चेतावनी उत्पाद निर्माण के विश्लेषण और तुलना के लिए किया गया था। पूर्वानुमान मुख्य रूप से आईएमडी द्वारा स्वदेशी रूप से विकसित मल्टी-मॉडल एसेम्बल तकनीकों पर आधारित थे।


- 3. आरएसएमसी नई दिल्ली के प्रदर्शन का पूर्वान्मान
- 3.1. 2022 के दौरान वार्षिक प्रदर्शन
- (ए) जेनेसिस पूर्वानुमान प्रदर्शन : क्षेत्र में विकसित सभी सीडी की भविष्यवाणी प्रत्येक गुरुवार को जारी विस्तारित रेंज आउटलुक (ईआरओ) में की गई थी। 7 मई को बीओबी पर दबाव बनने से लगभग 9 दिन पहले, 28 अप्रैल को जारी ईआरओ मार्गदर्शन में चक्रवात असानी की भविष्यवाणी की गई थी। 16 अक्टूबर को बीओबी पर अवसाद के गठन से लगभग 16 दिन पहले, 6 अक्टूबर को जारी ईआरओ मार्गदर्शन में सीतारंग की भविष्यवाणी की गई थी। 6 दिसंबर को बीओबी पर अवसाद के गठन से लगभग 12 दिन पहले, 24 नवंबर को जारी ईआरओ मार्गदर्शन में मैंडस की भविष्यवाणी की गई थी।
- (बी) प्रीजेनेसिस ट्रैक और तीव्रता पूर्वानुमान प्रदर्शन : आईएमडी ने उचित सटीकता के साथ कम दबाव क्षेत्र चरण से चक्रवातों के ट्रैक, तीव्रता और लैंडफॉल का पूर्व-उत्पत्ति पूर्वानुमान जारी किया। चक्रवात, मैंडौस के पूर्व-उत्पत्ति ट्रैक पूर्वानुमान में लगभग शून्य लैंडफॉल बिंदु और समय के साथ-साथ लैंडल तीव्रता पूर्वानुमान त्रृटियां थीं।
- (सी) ट्रैक पूर्वानुमान प्रदर्शन: 2022 में वार्षिक औसत ट्रैक पूर्वानुमान त्रुटियां 12, 24 और 36 घंटों के लिए क्रमशः 42.3 किमी, 77.5 किमी और 108.0 किमी रही हैं, जबिक लंबी अविध की औसत (एलपीए) त्रुटियां 51.7, 82.4 और 100.3 किमी आधारित थीं। 2012-2021 के आंकड़ों पर. 2003 के बाद से पूर्वानुमान सटीकता 24 घंटे की लीड अविध के लिए 5.8 किमी/वर्ष (10 वर्षों में 58 किमी) की दर से सुधार का संकेत देती है।
- (डी) तीव्रता पूर्वानुमान प्रदर्शन: तीव्रता पूर्वानुमान त्रुटि में वार्षिक औसत निरपेक्ष त्रुटि (एई) 3.8 समुद्री मील, 4.0 समुद्री मील और 5.0 समुद्री मील रही है, जबिक एलपीए (2012-21) की त्रुटियां 8.9, 13.0 और 24, 48 और 14.9 समुद्री मील हैं। क्रमशः 72 घंटे की लीड अविध। 2005 के बाद से तीव्रता पूर्वानुमान सटीकता 24 घंटे की लीड अविध के लिए 0.52 समुद्री मील प्रति वर्ष (10 वर्षों में 5.2 समुद्री मील) की दर से स्धार का संकेत देती है।
- (ई) लैंडफॉल बिंदु पूर्वानुमान प्रदर्शन: वर्ष 2022 के लिए वार्षिक औसत लैंडफॉल बिंदु पूर्वानुमान त्रुटियां 14.8 किमी, 24.5 किमी और 4.5 किमी रही हैं, जबकि एलपीए (2012-21) त्रुटियां 32.5 किमी, 62.9 किमी और 24 के लिए 103.9 किमी थीं। क्रमशः 48 और 72 घंटे की लीड अविध। 2003 के बाद से

भूस्खलन बिंदु पूर्वानुमान सटीकता 2003 के बाद से 24 घंटे की लीड अविध के लिए 14.4 किमी/वर्ष (10 वर्षों में 144 किमी) की दर से सुधार का संकेत देती है।

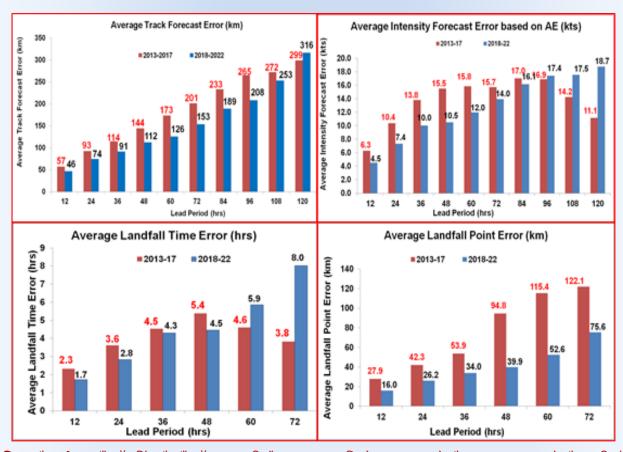

(एफ) लैंडफॉल समय पूर्वानुमान प्रदर्शन : वर्ष के लिए लैंडफॉल समय पूर्वानुमान त्रुटियां क्रमशः 24, 48 और 72 घंटे की लीड अविध के लिए एलपीए (2012-21) 3.1, 4.9 और 6.6 घंटे की बृटियों के मुकाबले 5.0, 7.5 और शून्य घंटे रही हैं। 2003 के बाद से भूस्खलन समय पूर्वानुमान सटीकता 2003 के बाद से 24 घंटे की लीड अविध के लिए 0.18 घंटे/वर्ष (10 वर्षों में 1.8 घंटे) की दर से सुधार का संकेत देती है।

चित्र 2. 2022 के दौरान वार्षिक औसत ट्रैक, तीव्रता, लैंडफॉल बिंद् और लैंडफॉल समय पूर्वान्मान सटीकता

चित्र 3. 22 अक्टूबर को 0830 बजे आईएसटी (लैंडफॉल से 63 घंटे पहले) पर ट्रैक, लैंडफॉल और तीव्रता में सटीकता का संकेत देते हुए अवलोकन और पूर्वान्मान ट्रैक जारी किया गया

चित्र 4.6 दिसंबर को 0830 बजे आईएसटी (लैंडफॉल से 90 घंटे पहले) पर ट्रैक, लैंडफॉल और तीव्रता में सटीकता का संकेत देते हुए अवलोकन और पूर्वान्मान ट्रैक जारी किया गया

एलपीए (2012-2021) की तुलना में 2022 के दौरान वार्षिक औसत ट्रैक, तीव्रता, लैंडफॉल बिंदु और लैंडफॉल समय पूर्वानुमान सटीकता चित्र 2 में प्रस्तुत की गई है। चक्रवात सीतारंग और मैंडौंस के दौरान अनिश्चितता और चतुर्भुज हवा वितरण के शंकु के साथ विशिष्ट अवलोकन और पूर्वानुमान ट्रैक क्रमशः चित्र 3 और चित्र 4 में प्रस्तुत किए गए हैं। 3.2. 2013-17 की तुलना में 2018-22 के दौरान प्रदर्शन का पूर्वानुमान


ए. 2018-22 के दौरान औसत ट्रैक पूर्वानुमान त्रुटियां 24, 48 और 72 घंटों के लिए क्रमशः 74 किमी, 112 किमी और 153 किमी रही हैं, जबकि 2013-17 के दौरान 93, 144 और 201 किमी की औसत त्रुटियां थीं। 2018-22 के दौरान 120 घंटे की लीड अवधि तक ट्रैक भविष्यवाणी में सटीकता में 20-25% का समग्र सुधार दर्ज किया गया।

बी. 2018-22 के दौरान तीव्रता पूर्वानुमान में औसत त्रुटियां 24, 48 और 72 घंटे की पूर्वानुमान अविध के लिए क्रमशः 7.4 समुद्री मील, 10.5 समुद्री मील और 14.0 समुद्री मील रही हैं, जबिक 2013-17 के दौरान 10.4, 15.5 और 15.7 समुद्री मील की औसत त्रुटियां थीं। 2018-22 के दौरान 72 घंटे की लीड अविध तक तीव्रता की भविष्यवाणी में सटीकता में 20-30% का समग्र सुधार दर्ज किया गया।

सी. 2018-22 के दौरान वार्षिक औसत भूस्खलन बिंदु पूर्वानुमान त्रुटियां 24, 48 और 72 घंटे की लीड अवधि के लिए 26.2 किमी, 39.9 किमी और 75.6 किमी रही हैं, जबकि 201317 के दौरान 42.3 किमी, 94.8 और 122.1 किमी की औसत त्रुटियां थीं। इस प्रकार, 2018-22 के दौरान 72 घंटे की लीड अविध तक भूस्खलन बिंदु की भविष्यवाणी में सटीकता में 40-70% का समग्र सुधार दर्ज किया गया।

डी. 2018-22 के दौरान भूस्खलन समय पूर्वानुमान त्रुटियां 24, 48 और 72 घंटे की लीड अविध के लिए 2.8, 4.5 और 3.8 घंटे रही हैं, जबिक 2013-17 के दौरान क्रमशः 3.6, 5.4 और 8.0 घंटे की औसत त्रुटियां थीं। इस प्रकार, 2018-22 के दौरान 48 घंटे की लीड अविध तक भूस्खलन समय की भविष्यवाणी में सटीकता में 15-25% का समग्र सुधार दर्ज किया गया।

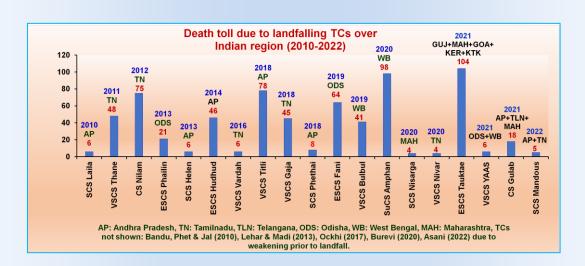
2018-22 के दौरान ट्रैक, लैंडफॉल और तीव्रता संबंधी बुटियों का 2013-17 के दौरान बुटियों का तुलनात्मक विश्लेषण चित्र 5 में प्रस्तुत किया गया है।

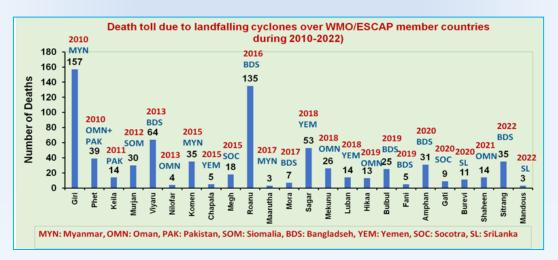


चित्र 5. ट्रैक, तीव्रता, लैंडफॉल बिंदु और लैंडफॉल समय त्रुटियों का तुलनात्मक विश्लेषण 2018-22 के दौरान बनाम 2013-17 के दौरान त्रुटियां

3.3. पांच साल की चलती औसत त्रुटियां

इस तथ्य को ध्यान में रखते हुए कि एनआईओ क्षेत्र एक वर्ष में औसतन लगभग 5 चक्रवातों का अनुभव करता है, ट्रैक, लैंडफॉल और तीव्रता की भविष्यवाणी में पूर्वानुमान प्रदर्शन को चित्र 6 में 5 साल की चलती औसत त्रृटियों के रूप में प्रस्तुत किया गया है। इस तथ्य के बावजूद कि एनआईओ क्षेत्र एक है खराब सामाजिक-आर्थिक परिस्थितियों वाले डेटा विरल क्षेत्र में, यह स्पष्ट रूप से देखा गया है कि पिछले कुछ वर्षों में इस क्षेत्र में ट्रैक, तीव्रता और भूस्खलन बिंदु और समय की भविष्यवाणी में महत्वपूर्ण सुधार हुआ है।


पांच साल की चलती औसत त्रृटियां



चित्र 6. पांच साल का मूविंग औसत ट्रैक, तीव्रता, लैंडफॉल बिंद् और लैंडफॉल समय त्रिटयां

चक्रवात के कारण मरने वालों की संख्या

2022 के दौरान आए चक्रवातों के कारण भारत में 5 मौतें हुईं और WMO/ESCAP पैनल के सदस्य देशों (जैसे बांग्लादेश और श्रीलंका) में 38 मौतें हुईं। 2010 के बाद से भारतीय क्षेत्र और WMO/ESCAP पैनल के सदस्य देशों में मरने वालों की संख्या दर्शाने वाले तुलनात्मक आंकड़े चित्र 7 में प्रस्तुत किए गए हैं। यह दर्शाता है कि भारत के साथ-साथ WMO/ESCAP में आए चक्रवातों के कारण मानव जीवन के नुकसान में उल्लेखनीय कमी आई है। उत्तर हिंद महासागर क्षेत्र में पैनल देश।

चित्र 7. भारतीय क्षेत्र और WMO/ESCAP सदस्य देशों में 2022 के दौरान चक्रवातों के कारण मरने वालों की संख्या

आईएमडी द्वारा 2022 के दौरान जारी किए गए बुलेटिन

आईएमडी ने एनआईओ क्षेत्र पर चौबीसों घंटे निगरानी बनाए रखी और अगले 2 सप्ताह के लिए वैध संभावित साइक्लोजेनेसिस पूर्वानुमान के साथ हर गुरुवार को विस्तारित रेंज आउटलुक (ईआरओ) जारी किया।

इसके बाद अगले 5 दिनों के लिए संभावित साइक्लोजेनेसिस पूर्वानुमान के साथ दैनिक उष्णकटिबंधीय मौसम दृष्टिकोण (TWO) जारी किया गया।

अवसाद के संभावित गठन पर, आईएमडी ने कम दबाव क्षेत्र के चरण में दिन में एक बार पूर्व-उत्पत्ति ट्रैक और तीव्रता का पूर्वानुमान जारी किया।

दबाव के गठन पर, आईएमडी ने 6 घंटे नियमित बुलेटिन जारी किए, उसके बाद चक्रवाती तूफान के चरण से 3 घंटे बुलेटिन जारी किए और भूस्खलन के मामले में, भूस्खलन से लगभग 12 घंटे पहले, हर घंटे बुलेटिन जारी किया।

उष्णकिटबंधीय चक्रवात पूर्वानुमान कार्यक्रम (टीसीएफपी) के तहत विशेष दैनिक पूर्वानुमान और नैदानिक बुलेटिन अक्टूबर-दिसंबर के दौरान जारी किया गया था।

वर्ष के दौरान जारी बुलेटिनों के आँकड़े नीचे दिए गए हैं:

विस्तारित रेंज आउटलुक: 52

उष्णकटिबंधीय मौसम आउटलुक: 326

आरएसएमसी बुलेटिन: 163

राष्ट्रीय बुलेटिन: 188

प्रति घंटा बुलेटिन: 20

अंतर्राष्ट्रीय नागरिक उड्डयन के लिए बुलेटिन: 37

प्रेस विज्ञप्ति: 42

6. 2022 के दौरान टीसी की प्रारंभिक चेतावनी प्रणाली के विभिन्न घटकों में प्रमुख पहल शामिल हैं

ए. अवलोकन: i) वर्तमान संख्या के साथ भारत के पूर्वी और पश्चिमी तट पर उच्च हवा की गति रिकार्डर का संवर्द्धन। पूरे देश में 36 एचडब्ल्यूएसआर तक पहुंचना, ii) रडार नेटवर्क को 36 देशों तक बढ़ाना, iii) उपग्रह, रडार के बेहतर विश्लेषण के लिए रैपिड नया टूल (संस्करण -2) (https://rapid.imd.gov.in/rapid/ पर उपलब्ध) और मॉडल उत्पाद, iv) लिंक पर मेटियोसैट-9 उत्पादों की उपलब्धताः http://foreignsat.imd.gov.in/, (अवलोकन और मॉडल उत्पादों की त्लना करने, समझने और विश्लेषण करने और निष्कर्ष पर पहंचने के लिए वेब जीआईएस आधारित निर्णय समर्थन प्रणाली) वर्तमान स्थिति और पूर्वान्मान पर निर्णय, v) चक्रवात मैंडौस के दौरान, डॉपलर वेदर चेन्नई ने एससीएस मैंडौस के भूस्खलन के दौरान वर्षा का 3डी विश्लेषण जारी किया (https://youtu.be/1S2BeFLVVfE)।

बी. मॉडलिंग: i) अन्य पारंपरिक अवलोकनों के साथ रडार डेटा के निरंतर समावेश के साथ उच्च रिज़ॉल्यूशन रैपिड रिफ़ेश मॉडल (https://nwp.imd.gov.in/wrf_HRRR_nwp_sp.php) का परिचय। ii) चक्रवात ट्रैक, तीव्रता और भूस्खलन की भविष्यवाणी के लिए नई मल्टी मॉडल एसेम्बल तकनीक का परिचय, iii) आईएमडी जीएफएस, एनसीईपी जीएफएस, जेएमए, एनईपीएस, जीईएफएस, एनसीयूएम, डब्ल्यूआरएफ, एनसीयूएम-आर, ईसीएमडब्ल्यूएफ, के एकल पैनल प्लॉट का निर्माण, iv) बेहतर विजुअलाइज़ेशन और निर्णय लेने के लिए ऑल इन वन मेटियोग्राम (IMD WRF, IMDGFS, GEFS, NEPS), (v) क्लाउड टू ग्राउंड लाइटनिंग के लिए EWRF मॉडल अगले 12 घंटों के लिए बिजली के घनत्व, परावर्तनशीलता और प्रति घंटा वर्षा का पूर्वानुमान प्रदान करता है।

सी. पूर्वानुमान सेवाएँ : (i) गतिशील प्रभाव आधारित पूर्वान्मान उत्पन्न करने के लिए वेब आधारित डायनेमिक कम्पोजिट रिस्क एटलस (वेब-डीसीआरए) उपकरण, (ii) पूर्वान्मानकर्ताओं के लिए स्वदेशी रूप से जीआईएस प्लेटफॉर्म पर वर्षा और हवाओं के लिए निर्णय समर्थन प्रणाली का विकास, (iii) मछ्आरों का विकास मल्टी मॉडल मार्गदर्शन पर आधारित चेतावनी ग्राफिक्स, (iv) 20 समुद्री मील और 35 सम्द्री मील से अधिक अधिकतम निरंतर हवा की गति के क्षेत्र के लिए संभाव्य मार्गदर्शन की शुरूआत, (v) ट्रैक, तीव्रता और संरचना के पूर्व-उत्पत्ति पूर्वानुमान की शुरुआत, (vi) की श्रूआत मार्च, 2022 से पूर्वान्मान ट्रैक से दूरी और आगमन का निकटतम समय, (vii) अपतटीय उद्योगों के लिए अन्कूलित स्थान विशिष्ट ब्लेटिन की श्रूआत, (viii) आसान निर्णय लेने के लिए उपयोगकर्ताओं के लिए पाठ्य, ग्राफिकल और इंटरैक्टिव जीआईएस प्लेटफॉर्म में समुद्री ब्लेटिन की उपलब्धता।

डी. चेतावनी प्रसार : आरएसएमसी ईमेल, फैक्स, वेबसाइट, सोशल नेटवर्किंग प्लेटफॉर्म (फेसबुक, ट्वीटर, व्हाट्सएप), एसएमएस आदि सहित संचार के सभी साधनों का उपयोग करता है। 2022 के दौरान, नई पहलों में शामिल हैं (i) ग्लोबल द्वारा उपयोग किए जा रहे एप्लिकेशन प्रोग्रामिंग इंटरफ़ेस का विकास डब्लूएमओ, गूगल, एप्पल, विंडी और विभिन्न केंद्रीय और राज्य सरकारों की एजेंसियों, डीडी न्यूज आदि सहित प्रेस और इलेक्ट्रॉनिक मीडिया का मल्टी-हैजर्ड अलर्ट सिस्टम (जीएमएएस), (iii) क्राउड सोर्सिंग, (iv) कॉमन अलर्ट प्रोटोकॉल (सीएपी) कार्यान्वयन और (v) व्हाट्सएप के माध्यम से WMO/ESCAP सदस्य देशों को चक्रवात ब्लेटिन का प्रसार।

इ. पूर्वानुमान सत्यापन : (i) विस्तारित और मध्यम रेंज में उत्पित पूर्वानुमान और (ii) पूर्व-उत्पित ट्रैक और तीव्रता पूर्वानुमान की सटीकता निर्धारित करने के लिए पूर्वानुमान के सत्यापन की शुरुआत, ट्रैक, तीव्रता, चक्रवाती गड़बड़ी के भूस्खलन के लिए पहले से शुरू की गई पूर्वानुमान सत्यापन विधियों के अलावा। संबद्ध प्रतिकूल मौसम पूर्वानुमान।

क्षमता निर्माण के उपाय

आईएमडी ने अप्रैल और अक्टूबर, 2022 के पहले सप्ताह में राष्ट्रीय और राज्य स्तरीय आपदा प्रबंधकों के साथ पूर्व-चक्रवात अभ्यास बैठकें आयोजित कीं।

अप्रैल में WMO/ESCAP पैनल के 13 सदस्य देशों के लिए दो सप्ताह का चक्रवात पूर्वान्मानकर्ताओं का प्रशिक्षण।

मई, 2022 में ऑफ-शोर ऑपरेटरों, तट रक्षकों, हाइड्रोकार्बन महानिदेशालय और संबंधित मंत्रालयों के अधिकारियों के लिए चक्रवातों की बुनियादी बातों के बारे में प्रशिक्षण।

8. प्रमुख प्रकाशन

2022 के दौरान आईएमडी ने चक्रवातों के संबंध में निम्नलिखित प्रकाशन जारी किए।

2021 के दौरान उत्तर हिंद महासागर पर चक्रवाती विक्षांभ पर रिपोर्ट।

उष्णकिटबंधीय चक्रवात संचालन योजना (टीसीपी-21) जिसमें 13 सदस्य देशों द्वारा उष्णकिटबंधीय चक्रवातों से संबंधित जानकारी और चेतावनियों की तैयारी, वितरण और आदान- प्रदान और उनके संबंधित संपर्क विवरण के लिए बंगाल की खाड़ी और अरब सागर क्षेत्र में अपनाई गई प्रक्रियाओं का स्पष्ट सूत्रीकरण शामिल है। रिपोर्ट IMD द्वारा तैयार की गई है और WMO द्वारा प्रकाशित की गई है।

2021 के दौरान पूर्वानुमान प्रदर्शन परियोजनाः एक रिपोर्ट।

2022 के दौरान चक्रवाती विक्षोओं पर प्रारंभिक रिपोर्ट।

2022 के दौरान सभी चक्रवाती विक्षोंभों का सर्वोत्तम ट्रैक डेटा। आरएसएमसी वेबसाइट पर चक्रवातों की जलवायु विज्ञान पर विभिन्न डेटासेट का अद्यतनीकरण।

2011 से आरएसएमसी वेबसाइट पर सभी बुलेटिनों का संग्रहण।

इन सभी उपायों ने आपदा प्रबंधकों और आम जनता को वर्ष के दौरान मानव जीवन की हानि को दोहरे अंक तक कम करने में सक्षम बनाया। इसने चक्रवाती विक्षोभों के सफल प्रबंधन और इस प्रकार नुकसान को कम करने के लिए आपदा प्रबंधकों, हितधारकों, मीडिया और आम जनता के बीच विश्वास पैदा करने में भी मदद की।

नियमित अपडेट के लिए कृपया

www.rsmcnewdelhi.imd.gov.in और www.mausam.imd.gov.in पर जाएं।

5.6. सूखे की निगरानी एवं भविष्यवाणी

एसपीआई (मानकीकृत वर्षा सूचकांक), एएआई (शुष्कता विसंगति सूचकांक) और एसपीईआई जैसे विभिन्न सूचकांकों का उपयोग करके सूखे की निगरानी और भविष्यवाणी की जा रही है। शुष्कता विसंगति सूचकांक (एएआई) का उपयोग करके सूखे की निगरानी की जा रही है। अत्यधिक/गंभीर/मध्यम शुष्क/गीली स्थितियों की प्रबलता या शुष्ठआत/समाप्ति वाले क्षेत्रों की पहचान करने के लिए हर हफ्ते और साथ ही हर महीने एसपीआई मानचित्र तैयार किए जा रहे हैं। संपूर्ण दक्षिण पश्चिम मानसून अवधि के लिए गणना की गई एसपीआई के विस्तृत आंकड़े विभिन्न राज्य सरकार एजेंसियों को सूखा प्रबंधन शुष्क करने में मदद करते हैं। कृषि मंत्रालय के नए सूखा मैनुअल के अनुसार साप्ताहिक एसपीआई मानचित्र और मूल्य सभी राज्य प्राधिकरणों को उनकी मांग के अनुसार भेजे जा रहे हैं।

मानकीकृत वर्षा वाष्पीकरण सूचकांक (एसपीईआई) का उपयोग करके साप्ताहिक सूखे की निगरानी वर्ष 2020 में की गई है। आईएमडी जीएफएस जिला वर्षा पूर्वानुमान का उपयोग करके एसडब्ल्यू मानसून और एनई मानसून के दौरान एक सप्ताह के अग्रिम एसपीआई और एएआई मानचित्रों की भविष्यवाणी की जा रही है। ईआरएफएस डेटा का उपयोग करके एक सप्ताह से चार सप्ताह के लिए एसपीआई पूर्वानुमान मानचित्र भी तैयार किए जा रहे हैं।

जल क्षेत्र के लिए जलवायु सेवाएँ

ईआरएफ के आधार पर भारत के 101 नदी उप बेसिनों के लिए बेसिन की औसत वर्षा और पानी की मात्रा की साप्ताहिक निगरानी और भविष्यवाणी वर्ष 2019 में शुरू की गई है और इसे नियमित रूप से आईएमडी पुणे की वेबसाइट पर अपलोड किया जा रहा है।

स्वास्थ्य क्षेत्र के लिए जलवायु सेवाएँ

स्वास्थ्य बुलेटिन के लिए जलवायु सूचना, अर्थात, वेक्टर जिनत रोग के लिए ट्रांसिमशन विंडों के स्थानिक वितरण का अस्थायी विकास और मई 2017 के दूसरे सप्ताह में शुरू किए गए साप्ताहिक आधार पर विस्तारित रेंज मौसम पूर्वानुमान के आधार पर वीबीडी घटना के लिए जलवायु उपयुक्तता की व्यापकता के बारे में संभाव्य दृष्टिकोण प्रत्येक पर जारी है। शुक्रवार। जिन क्षेत्रों में अगले दो सप्ताह के दौरान वीबीडी ट्रांसिमशन विंडों के ऊपर अधिकतम/न्यूनतम तापमान सीमा के भीतर अधिकतम/न्यूनतम तापमान प्राप्त होने की संभावना है, उनका संकेत दिया गया है।

अध्याय ६

क्षमता निर्माण, सार्वजनिक जागरूकता और आउटरीच कार्यक्रम

2022 में आईएमडी की प्रमुख पहल अपने अधिकारियों और कर्मचारियों, देश के अन्य संगठनों के कर्मियों के साथ-साथ विदेशी देशों, विशेष रूप से एशिया प्रशांत क्षेत्रों के कर्मियों के किए संगठित प्रशिक्षण कार्यक्रमों, उपयोगकर्ता कार्यशालाओं, सम्मेलनों आदि के माध्यम से क्षमता निर्माण प्रदान करना था। मुख्य विवरण हैं नीचे के रूप में.

6.1. सम्मेलन, सेमिनार और संगोष्ठी

डॉ. पुलक गुहाटाकुर्ता, वैज्ञानिक 'एफ', डॉ. राजीब चट्टोपाध्याय, वैज्ञानिक 'ई', और डॉ. दिव्या सुरंद्रन, वैज्ञानिक 'सी' ने राष्ट्रीय रोग नियंत्रण केंद्र (एनसीडीसी) द्वारा आयोजित राष्ट्रीय जलवायु परिवर्तन और मानव स्वास्थ्य कार्यक्रम (एनपीसीसीएचएच) वेबिनार शृंखला में भाग लिया था और राज्य के स्वास्थ्य विभाग के अधिकारियों के साथ भारत के जलवायु खतरों और भेद्यता एटलस पर एक ऑनलाइन बातचीत की थी। 11 फरवरी, 2022.

श्री राजा आचार्य, मौसम विज्ञानी 'ए', 14-16 फरवरी, 2022 के दौरान अंतर्राष्ट्रीय महासागरीय और डेटा एक्सचेंज (अंतर सरकारी महासागरीय आयोग) द्वारा ऑनलाइन आयोजित "अंतर्राष्ट्रीय महासागर डेटा सम्मेलन 2022" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने आईएमएस पुणे द्वारा आयोजित 3 दिवसीय वार्षिक मानसून कार्यशाला (एएमडब्ल्यू-2021) और "बदलती जलवायु और चरम घटनाओं के प्रभाव, शमन और महासागरों की भूमिका" विषय पर राष्ट्रीय ई-संगोष्ठी के उद्घाटन सत्र में भाग लिया। अध्याय 21 फरवरी, 2022.

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 22 फरवरी, 2022 को "भारत भारती भाषा महोत्सव-2022: एक पर्दा उठाने वाला" में भाग लिया।

डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' ने 9 मार्च, 2022 को क्रिस्टोफर व्हाइट, स्ट्रैथक्लाइड विश्वविद्यालय, ग्लासगो, यूके द्वारा "उप-मौसमी-से-मौसमी भविष्यवाणियों के अनुप्रयोग और उपयोगिता में हालिया प्रगति" पर ऑनलाइन वेबिनार में भाग लिया।

श्री बी. पी. यादव, वैज्ञानिक 'एफ', डॉ. अशोक कुमार दास, वैज्ञानिक 'ई', श्री एस.के. माणिक, वैज्ञानिक 'सी', श्री अशोक राजा, वैज्ञानिक 'सी' और सुश्री हेमलता भारवानी, वैज्ञानिक 'सी' ने डॉ. वी. के. मिनी, वैज्ञानिक 'ई' से द्वारा दी गई प्रस्तुति में भाग लिया। एफएमओ त्रिवेन्द्रम के लिए 'सिनॉप्टिक एनालॉग मॉडल' के प्रदर्शन के लिए 11 मार्च, 2022 को वीसी के माध्यम।

सिनोप्टिक एनालॉग मॉडल का उपयोग करके बाढ़ का पूर्वानुमान

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 12 मार्च, 2022 को प्रभासी ओडिया समिति, नई दिल्ली द्वारा "आत्मिनर्भर भारत के लिए पर्यावरणीय स्थिरता" पर राष्ट्रीय वेबिनार श्रृंखला के दौरान सम्मानित अतिथि के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 17 मार्च, 2022 को तमिलनाडु कृषि विश्वविद्यालय, कोयंबटूर द्वारा "बहुआयामी उत्पादन रणनीतियां के माध्यम से जलवायु लचीली खेती" पर आयोजित अंतर्राष्ट्रीय सम्मेलन के दौरान मुख्य वक्ता के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 17 मार्च, 2022 को कैबिनेट सचिवालय में "राष्ट्रीय संकट प्रबंधन

समिति" की बैठक में भाग लिया और अंडमान सागर के ऊपर कम दबाव क्षेत्र की स्थिति पर एक प्रस्त्ति दी।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने गोवा में "अंतर्राष्ट्रीय हिंद महासागर विज्ञान सम्मेलन (आईआईओएससी-2022)" में भाग लिया और 18 मार्च, 2022 को "समुद्री मौसम के खतरे 14-चरम घटनाएं और उनके प्रभाव" विषय पर सत्र की अध्यक्षता की।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 18 मार्च, 2022 को मुख्य वक्ता के रूप में "टीएनएयू-फसल प्रबंधन निदेशालय - स्वर्ण जयंती वर्ष अंतर्राष्ट्रीय सम्मेलन, 2022" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 24 मार्च, 2022 को "बिल्डिंग क्लाइमेट रेजिलिएशन एंड ट्रांजिशन ट्र सर्कुलर इकोनॉमी" विषय पर सम्मेलन में सम्मानित अतिथि के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 25 मार्च, 2022 को "जलवायु परिवर्तन और जल संपर्क पर सीआईआई सम्मेलन: जल सुरक्षित भविष्य के लिए जोखिम से लचीलेपन की ओर बढ़ना" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 7 अप्रैल, 2022 को एनडीआरएफ, नई दिल्ली द्वारा आपदा प्रतिक्रिया के लिए क्षमता निर्माण पर आयोजित वार्षिक सम्मेलन - 2022 में भाग लिया। डीजीएम, आईएमडी ने 8 अप्रैल, 2022 को समापन सत्र में भी भाग लिया।

श्री के. एस. होसालिकर, वैज्ञानिक 'जी', डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई' और डॉ. राजीब चट्टोपाध्याय, वैज्ञानिक 'ई' ने 19-20 अप्रैल, 2022 को "क्वाड क्लाइमेट इंफॉर्मेशन सर्विसेज टास्कफोर्स एक्सपर्ट्स ग्रुप" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 20-21 अप्रैल, 2022 को विज्ञान भवन, नई दिल्ली में "**15**^{वें} सिविल सेवा दिवस" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 22 अप्रैल, 2022 को सिस्टेमैटिक्स शेयर्स एंड स्टॉक्स (इंडिया) लिमिटेड के साथ "मानस्न सीजन" पर वर्चुअल कॉन्फ्रेंस कॉल में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 23 अप्रैल, 2022 को अल्ली गांव, सांबा, जम्मू-कश्मीर में **पंचायती राज** दिवस समारोह में भाग लिया, जिसका उद्घाटन भारत के माननीय प्रधान मंत्री दवारा किया गया था।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 26 अप्रैल, 2022 को "22^व दक्षिण एशियाई जलवायु आउटलुक फोरम" के उद्घाटन सत्र में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 4 मई, 2022 को "डब्ल्यूएमओ महासचिव ब्रीफिंग सत्र" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 11 मई, 2022 को राष्ट्रीय सीमेंट और भवन निर्माण सामग्री परिषद (एनसीसीबीएम), बल्लभगढ़, हरियाणा द्वारा आयोजित राष्ट्रीय प्रौद्गेगिकी दिवस, 2022 समारोह में मुख्य अतिथि के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. के. सथी देवी, वैज्ञानिक 'एफ' ने 13 मई, 2022 को वीडियो कॉन्फ्रेंस के माध्यम से केंद्रीय गृह सचिव की अध्यक्षता में 'श्री अमर नाथ जी यात्रा 2022' की तैयारियों और अन्य व्यवस्थाओं की समीक्षा के लिए बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 18-19 मई, 2022 को नई दिल्ली में दक्षिण-पश्चिम मानसून 2022 के लिए तैयारियों की स्थिति की समीक्षा करने के लिए राज्यों/केंद्रशासित प्रदेशों के आपदा प्रबंधन विभाग के राहत आयुक्तों/सचिवों के वार्षिक सम्मेलन में भाग लिया। और एक प्रेजेंटेशन दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 20 मई, 2022 को आईसीएआर-आईआईएसएस, भोपाल में "आपदा प्रतिरोधी कृषि के लिए जलवायु सूचना" पर आयोजित आमने-सामने प्रशिक्षण कार्यक्रम के समापन सत्र को संबोधित किया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 23 मई, 2022 को "दक्षिण एशिया में परिचालन सेवाओं की मौसमी भविष्यवाणी" पर प्रशिक्षण के उद्घाटन सत्र में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने नई दिल्ली में "इंडिस्ट्रियल डीकार्बोनाइजेशन समिट 2022" में भाग लिया, जिसका उद्घाटन 16 जून 2022 को माननीय केंद्रीय मंत्री श्री नितिन गगकरी ने किया।

शिखर सम्मेलन के दौरान माननीय केंद्रीय मंत्री, श्री नितिन गगकरी, डॉ. एस. डी. अत्री और अन्य

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 20 जून, 2022 को "ओसीपी के डब्लूएमओ तीसरे उच्च-स्तरीय वर्चुअल सत्र" और "राष्ट्रीय मौसम विज्ञान या हाइड्रोमेटोरोलॉजिकल सेवाओं-विकसित भूमिकाओं और जिम्मेदारियों के भविष्य पर श्वेत पत्र # 2" के लॉन्च में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 5-6 अगस्त, 2022 के दौरान इंस्टीट्यूशन ऑफ इंजीनियर्स द्वारा "उद्योगों में स्थिरता प्राप्त करने के लिए आधुनिक प्रदूषण निवारण तकनीकों" पर आयोजित एक सेमिनार में भाग लिया।

सेमिनार के उद्घाटन के दौरान डॉ. एस. डी. अत्री

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 10 और 11 तारीख को पृथ्वी विज्ञान मंत्रालय, भारत सरकार, सोसाइटी ऑफ अर्थ साइंटिस्ट्स और आईएनएसए (भारतीय राष्ट्रीय विज्ञान अकादमी) नई दिल्ली द्वारा आयोजित प्रथम अंतर्राष्ट्रीय भू-विविधता दिवस और छठे अंतर्राष्ट्रीय भू-नैतिकता दिवस पर आभासी सम्मेलन में भाग लिया। अक्टूबर, 2022.

श्री एस. के. माणिक, वैज्ञानिक 'सी' ने 10-12 अक्टूबर, 2022 को जयपुर, राजस्थान में केंद्रीय सिंचाई और बिजली बोर्ड (सीबीआईपी), केंद्रीय जल आयोग और डीआरआईपी के सहयोग से बड़े बांधों पर भारतीय समिति (आईएनसीओएलडी) द्वारा आयोजित छठे अंतर्राष्ट्रीय बांध स्रक्षा सम्मेलन में भाग लिया।

डॉ. एच. आर. बिस्वास, वैज्ञानिक 'एफ', श्री यू. दास, वैज्ञानिक 'सी' और डॉ. एस. द्विवेदी, वैज्ञानिक शहरी मौसम सेवाओं और प्रभाव आधारित पूर्वानुमान के लिए भू-स्थानिक डेटा साझाकरण के संबंध में 13 अक्टूबर, 2022 को भारत मौसम विज्ञान विभाग और ओडिशा अंतरिक्ष अनुप्रयोग केंद्र के बीच वीडियो कॉन्फ्रेंस में 'सी' ने भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 22 अक्टूबर, 2022 को "जलवायु अनुकूलन के लिए संयुक्त राष्ट्र वैश्विक प्रारंभिक चेतावनी पहल: सभी के लिए प्रारंभिक चेतावनी" विषय पर डब्लूएमओ तकनीकी हाइब्रिड सम्मेलन में ऑनलाइन मोड में भाग लिया।

डॉ. जी. एन. राहा, प्रमुख एम. सी. गंगटोक ने 1 नवंबर, 2022 को नवंबर 2022 के लिए वर्षा और तापमान के मासिक आउटलुक पर वर्चुअल प्रेस कॉन्फ्रेंस में भाग लिया। बैठक की अध्यक्षता मौसम विज्ञान महानिदेशक, नई दिल्ली ने की।

श्री बिक्रम सिंह, वैज्ञानिक 'एफ' और श्री रोहित थपलियाल, वैज्ञानिक 'सी' ने 4 नवंबर से 7 नवंबर, 2022 तक उत्तरांचल विश्वविद्यालय, देहरादून में आईआईआरएस, देहरादून द्वारा आयोजित "आकाश फॉर लाइफ" पर राष्ट्रीय सम्मेलन और प्रदर्शनी में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 8 दिसंबर, 2022 को कोएलिशन फॉर डिजास्टर रेजिलिएंट इंफ्रास्ट्रक्चर (सीडीआरआई), नई दिल्ली द्वारा आयोजित बैठक के दौरान "चरम गर्मी के प्रति लचीलेपन का निर्माण: अवसर और आगे का रास्ता" विषय पर गोलमेज सम्मेलन में भाग लिया।

सुश्री आर. बी. गायरी, मौसम विज्ञानी 'बी' और सुश्री डोली हलोई, मौसम विज्ञानी 'बी' ने 14-15 दिसंबर, 2022 को "सतत प्रौद्योगिकी या नदी कटाव उन्मूलन और प्रबंधन -2022 (STREM-2022)" पर अंतर्राष्ट्रीय सम्मेलन में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 22-24 दिसंबर, 2022 के दौरान सीआरआईडीए हैदराबाद द्वारा आयोजित अंतर्राष्ट्रीय सम्मेलन में प्रतिनिधियों को पैनलिस्ट के रूप में संबोधित किया।

डॉ. एस. डी. अत्री, वैज्ञानिक। सम्मेलन के दौरान 'जी' और अन्य

श्री राजा आचार्य, मौसम विज्ञानी 'ए', इंटरगवर्नमेंटल ओशनोग्राफिक कमीशन (यूएन) द्वारा 22-26 नवंबर, 2022 के दौरान हाइब्रिड मोड के माध्यम से बाली इंडोनेशिया में आयोजित आभासी सम्मेलन "हिंद महासागर सुनामी रेडी हाइब्रिड वर्कशॉप" में भाग लिया। डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 1 दिसंबर, 2022 को सहयाद्री राज्य अतिथि गृह, मुंबई में महाराष्ट्र में जलवायु लचीला कृषि परियोजना (पीओसीआरए) के तहत महाराष्ट्र सरकार (जीओएम) द्वारा आयोजित "विकास के लिए अनुकूल वातावरण का निर्माण" विषय पर एक संगोष्ठी में भाग लिया।

डॉ. राजीब चट्टोपाध्याय, वैज्ञानिक 'ई', डॉ. अनन्या कर्माकर, वैज्ञानिक 'सी', सुश्री लक्ष्मी एस, जेआरएफ और श्री नीलेश वाघ, प्रोजेक्ट वैज्ञानिक 'सी' ने 29 नवंबर से 2 दिसंबर, 2022 तक आईआईएसईआर भोपाल में आयोजित राष्ट्रीय संगोष्ठी ट्रॉपमेट-2022 में भाग लिया।

6.2. कार्यशाला

6 जनवरी, 2022 को एमिटी विश्वविद्यालय द्वारा "पर्यावरण प्रणालियों के लिए जलवायु मॉडलिंग और रिमोट सेंसिंग अनुप्रयोगों" पर आयोजित 3 दिवसीय कार्यशाला सह प्रशिक्षण कार्यक्रम में आईएमडी के

महानिदेशक **डॉ. एम. महापात्र** ने सम्मानित अतिथि के रूप में भाग लिया। विश्वविदयालय द्वारा स्मृति चिन्ह.

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने सरकार के मंत्रालयों/विभागों के आपदा प्रबंधन नोडल अधिकारियों के लिए कार्यशाला में भाग लिया। 2 मार्च को भारत सरकार ने "प्रारंभिक चेतावनी प्रणाली" पर प्रस्त्ति दी।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 7-11 मार्च के दौरान "तीसरी डब्ल्यूसीएसएसपी भारत वार्षिक कार्यशाला" में भाग लिया और एक सत्र की अध्यक्षता की।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 25 मार्च, 2022 को इलेक्ट्रॉनिक्स और सूचना प्रौद्योगिकी मंत्रालय के राष्ट्रीय ई-गवर्नंस डिवीजन (एनईजीडी) द्वारा आयोजित सरकारी नेताओं के लिए 'आपूर्ति शृंखला समस्याओं को हल करने के लिए एआई और ब्लॉकचेन का उपयोग करना' शीर्षक वाली डिजिटल इंडिया डायलॉग्स क्षमता निर्माण कार्यशाला में भाग लिया।

मानसून पर अंतर्राष्ट्रीय कार्यशाला - 7 (आईडब्ल्यूएम-7)

मानसून पर 7^{वीं} अंतर्राष्ट्रीय कार्यशाला (IWM-7) संयुक्त रूप से भारत मौसम विज्ञान विभाग, पृथ्वी विज्ञान मंत्रालय, भारत सरकार और WGTMR द्वारा, WCRP CLIVAR/GEWEX मानसून पैनल, अंतर्राष्ट्रीय मानसून परियोजना कार्यालय (IMPO) के सहयोग से आयोजित की गई थी। 22-26 मार्च, 2022 के दौरान नई दिल्ली, भारत में भारतीय उष्णकिटबंधीय मौसम विज्ञान संस्थान (आईआईटीएम) और भारतीय मौसम विज्ञान सोसायटी (आईएमएस)। एक पुस्तिका "सार खंड: IWM-7" उन सभी सार तत्वों का संकलन है जिन्हें प्रस्तुत किया जाएगा। IWM-7 के दौरान।

मानसून पर अंतर्राष्ट्रीय कार्यशाला के प्रतिभागी

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने "डब्ल्यूएमओ की अंतर्राष्ट्रीय मानसून कार्यशाला-7" के उद्घाटन समारोह में भाग लिया और 26 मार्च, 2021 को एक सत्र की अध्यक्षता की।

श्री बी. पी. यादव, वैज्ञानिक 'एफ' ने 6 मई, 2022 को रामगंगा नदी बेसिन में ई-प्रवाह मूल्यांकन सहित नदी बेसिन प्रबंधन योजना के विकास के लिए डेटा उपलब्धता और आवश्यकता पर ऑनलाइन परामर्श कार्यशाला में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 11 मई, 2022 को राष्ट्रीय सीमेंट और भवन निर्माण सामग्री परिषद (एनसीसीबीएम), बल्लभगढ़, हरियाणा द्वारा आयोजित राष्ट्रीय प्रौद्योगिकी दिवस, 2022 समारोह में म्ख्य अतिथि के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने आईएमडी के अन्य विरष्ठ अधिकारियों के साथ डॉ. अंबेडकर इंटरनेशनल सेंटर, 15, जनपथ, नई दिल्ली में "भारत में बांध सुरक्षा प्रशासन के लिए बांध सुरक्षा अधिनियम, 2021" पर एक दिवसीय राष्ट्रीय कार्यशाला में भाग लिया। 16 जून, 2022.

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 22 जून, 2022 को विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) द्वारा अपनी कार्यान्वयन योजना के संबंध में वर्चुअल मोड में आयोजित "डब्ल्यूआईएस 2.0 बैठक" पर कार्यशाला में भाग लिया, और उद्योग को डब्ल्यूआईएस से संक्रमण की तैयारी के लिए "डब्ल्यूआईएस2 इन ए बॉक्स" दिया। और WIS 2.0 के लिए GTS और WIS-2.0 को बढ़ावा देने के लिए तालमेल के अवसर तलाशने के लिए।

श्री बी. पी. यादव, वैज्ञानिक 'एफ', श्री राहुल सक्सैना, वैज्ञानिक 'एफ', डॉ. ए. के. दास, वैज्ञानिक 'ई', श्री एस. के. माणिक, वैज्ञानिक 'सी', श्री अशोक राजा, वैज्ञानिक 'सी' और सुश्री हेमलता भारवानी, वैज्ञानिक 'सी' ने एनआरएससी, जीएसआई के प्रतिनिधियों के साथ 29 जून, 2022 को भारतीय क्षेत्र के रुद्रप्रयाग (उत्तराखंड) और वायनाड (केरल) पर विशेष जोर देने के साथ "भूस्खलन खतरा आकलन क्षमता" - पूर्वानुमानकर्ताओं के प्रशिक्षण पर एक दिवसीय तकनीकी कार्यशाला में भाग लिया।

"भुस्खलन खतरा आकलन क्षमता" पर कार्यशाला

श्री एस. के. माणिक, वैज्ञानिक 'सी' ने "डेटा मुद्रीकरण, ईओडीबी और एनएसडीआई में डेटा एकीकरण के लिए एनडीआर जियो पोर्टल" की कार्यक्षमता का प्रदर्शन करने के लिए 10 अगस्त, 2022 को 1 दिवसीय कार्यशाला में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. डी. आर. पटनायक, वैज्ञानिक 'एफ' ने 1-2 अगस्त, 2022 के दौरान पहली केरल राज्य जलवायु परिवर्तन हितधारक परामर्श कार्यशाला (केसीसीएससीडब्ल्यू-उपयोगकर्ता क्षेत्रों की मौसम और जलवायु सूचना आवश्यकताओं की पहचान के लिए) में भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 15-17 अगस्त, 2022 के दौरान इंटरनेशनल सेंटर फॉर थ्योरेटिकल फिजिक्स, इटली द्वारा आयोजित ऑनलाइन कार्यशाला "फ्रॉम ग्लोबल टू कोस्टल: एक दशक के त्वरित परिवर्तन में एक उन्नत महासागर अवलोकन प्रणाली के लिए नए समाधान और साझेदारी की खेती" में भाग लिया। UN/IAEA), GOOS और CLIVAR (WMO)।

डॉ. सोमा सेनरॉय, वैज्ञानिक 'एफ' और श्री उमाशंकर दास, वैज्ञानिक 'सी' ने 25-26 अगस्त, 2022 के दौरान फकीर मोहन विश्वविद्यालय (एफएमयू), बालासोर में "लाइटनिंग-नॉर्थ ओडिशा ट्राइबल लाइटनिंग रेजिलिएंस प्रोग्राम-2022" पर कार्यशाला और हितधारकों की बैठक में भाग लिया, जो पीजी भूगोल विभाग, एफएमयू और संयुक्त रूप से आयोजित की गई थी। क्लाइमेट रेजिलिएंट ऑब्जर्विंग सिस्टम प्रमोशन काउंसिल (सीआरओपीसी) और भारत मौसम विज्ञान विभाग।

श्री एम. आई. अंसारी, वैज्ञानिक ई ने 5-9 सितंबर, 2022 तक लिंडेनबर्ग, जर्मनी में "डब्ल्यूएमओ 2022 अपर-एयर इंस्डूमेंट इंटरकंपेरिसन" में भाग लिया था।

डॉ. शंकर नाथ, वैज्ञानिक 'ई' ने 19-21 सितंबर, 2022 के दौरान एम्स्टर्डम, नेरलैंड में डब्ल्यूएमओ कॉमन अलर्टिंग प्रोटोकॉल (सीएपी) कार्यान्वयन कार्यशाला और प्रशिक्षण पाठ्यक्रम में भाग लिया।

डॉ. सोमनाथ दत्ता, वैज्ञानिक 'एफ', एमटीआई पुणे ने 19-23 सितंबर तक जिनेवा, स्विट्जरलैंड में "**ईसी** क्षमता विकास पैनल (सीडीपी) की 5^{वीं} बैठक" में भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 5 और 19 अक्टूबर, 2022 को अंतर-सरकारी महासागरीय आयोग (यूएन) द्वारा आयोजित "ओशन बेस्ट प्रैक्टिसेज वर्चुअल वर्कशॉप (ओबीपीएस VI)" में भाग लिया।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 10-14 अक्टूबर, 2022 के दौरान हैदराबाद में "द्वितीय संयुक्त राष्ट्र विश्व भू-स्थानिक सूचना कांग्रेस (यूएनडब्ल्यूजीआईसी 2022)" में भाग लिया।

डॉ. सत्यभान बी. रत्ना, वैज्ञानिक 'ई' ने 12 और 19 अक्टूबर, 2022 को CLIVAR द्वारा आयोजित "CLIVAR CDP वार्षिक कार्यशालाः दशकीय और लंबे समय के पैमाने पर बाहरी बनाम आंतरिक परिवर्तनशीलता" में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 12 और 13 अक्टूबर, 2022 को विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) द्वारा "कृषि सेवाओं पर स्थायी समिति" की चौथी बैठक के संयोजन में आयोजित "कृषि मौसम विज्ञान सेवाओं" पर ऑनलाइन कार्यशाला में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' और डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' ने 17 अक्टूबर, 2022 को यूएनडीपी द्वारा आयोजित जेएसबी परियोजना के तहत "सिक्किम (पश्चिम सिक्किम) और उत्तराखंड (उत्तरकाशी) राज्यों के जिलों के लिए ब्लॉक स्तर पर जलवायु परिवर्तन भेद्यता आकलन" पर एक ऑनलाइन परामर्श कार्यशाला में भाग लिया।

श्री बिक्रम सिंह, वैज्ञानिक 'एफ', एमसी देहरादून को डॉ. आर. एस. टोलिया उत्तराखंड प्रशासन अकादमी, नैनीताल द्वारा 20-21 अक्टूबर, 2022 तक "जोखिम कम करना और लचीलापन बनाना : पर्वतीय राज्यों में क्षमता निर्माण" विषय पर दो दिवसीय राष्ट्रीय कार्यशाला के लिए आमंत्रित किया गया था। राष्ट्रीय आपदा प्रबंधन संस्थान, गृह मंत्रालय, भारत सरकार। दिल्ली. श्री बिक्रम सिंह, प्रमुख/वैज्ञानिक-'एफ', एमसी देहरादून ने "पहाड़ों में आपदा जोखिम : जलवायु परिवर्तन" विषय पर सत्र में योगदान देने के लिए पैनलिस्ट के रूप में दो दिवसीय राष्ट्रीय कार्यशाला में भाग लिया।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 31 अक्टूबर, 2022 को हाइब्रिड मोड में "डेटा साझाकरण के लिए भू-स्थानिक सूचना मानकों को अपनाने की रणनीतियाँ" पर विचार-मंथन में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 1 नवंबर, 2022 को वीसी के माध्यम से विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) द्वारा आयोजित "जन-केंद्रित प्रभाव आधारित चेतावनियों" पर कार्यशाला में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' और डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' ने 1 नवंबर, 2022 को "लोग-केंद्रित प्रभाव-आधारित पूर्वानुमान और चेतावनियां" पर WMO WWRP HIWeather प्रभाव-आधारित चेतावनी कार्यशाला शृंखला की ऑनलाइन दूसरी कार्यशाला में भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने डब्ल्यूएमओ और इंटरगवर्नमेंटल ओशनोग्राफिक कमीशन (यूएन) द्वारा 1-4 नवंबर, 2022 के दौरान हाइब्रिड मोड के माध्यम से जिनेवा स्विट्जरलैंड में आयोजित "डेटा बॉय कोऑपरेशन पैनल (डीबीसीपी-38) के 38^{वं} सत्र" में वस्तुतः भाग लिया।

श्री बी. पी. यादव, वैज्ञानिक 'जी' और श्री अशोक राजा एस. के., वैज्ञानिक 'सी' ने 1-5 नवंबर, 2022 तक एनडब्ल्यूडीए द्वारा समानता के साथ सतत विकास के लिए जल सुरक्षा पर आयोजित भारत जल सप्ताह 2022 में भाग लिया। श्री बी. पी. यादव, वैज्ञानिक 'जी' ने 2 नवंबर, 2022 को जलवायु परिवर्तन और अनुकूलन रणनीतियों के प्रभाव पर सत्र की सह-अध्यक्षता भी की।

श्री बी. पी. यादव, वैज्ञानिक 'जी' ने 3 नवंबर, 2022 को विश्व बैंक द्वारा आयोजित "हाइड्रोमेट एंड अर्ली वार्निंग ज्वाइंट लर्निंग एक्सरसाइज पार्टनरशिप बिल्डिंग" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 10 नवंबर, 2022 को WMO द्वारा आयोजित "**बहु-खतरे आधारित** चेतावनियों" पर कार्यशाला में वस्त्तः भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने डब्ल्यूएमओ द्वारा 5-9 दिसंबर, 2022 के दौरान हाइब्रिड मोड के माध्यम से बाली इंडोनेशिया में आयोजित आभासी कार्यशाला "उष्णकिटबंधीय चक्रवातों पर दसवीं अंतर्राष्ट्रीय कार्यशाला (आईडब्ल्यूटीसी-10)" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी, डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई', डॉ. सत्यभान बी. रत्ना, वैज्ञानिक 'ई' और आईएमडी के अन्य विरष्ठ अधिकारियों ने 6-8 दिसंबर, 2022 के दौरान "अल नीनो/ला नीना जानकारी का समर्थन करने वाली डब्ल्यूएमओ मान्यता प्राप्त इकाई" पर स्कोपिंग कार्यशाला में भाग लिया। डॉ. एम. महापात्र, डीजीएम आईएमडी ने कार्यशाला के दौरान उद्घाटन और स्वागत भाषण दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 10 दिसंबर, 2022 को मौसम विज्ञान निगरानी कार्यालय, नई दिल्ली में "विमानन सेवाओं के लिए कोहरे की निगरानी और पूर्वानुमान" पर आयोजित ऑनलाइन कार्यशाला में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और श्री बी. पी. यादव, वैज्ञानिक 'जी' ने 15 दिसंबर, 2022 को WMO द्वारा आयोजित "5^व RA-II हाइड्रोलॉजिकल एडवाइजर्स फोरम" में भाग लिया।

डॉ. सत्यभान बी. रत्ना, वैज्ञानिक 'ई' ने 7 दिसंबर, 2022 को "एनएफसीएस दक्षिण अफ्रीका फंडिंग मॉडल विकल्प" पर एक ऑनलाइन कार्यशाला में भाग लिया।

6.3. बैठकों

श्री शिविंदर सिंह, वैज्ञानिक 'सी' और श्री भाविश जेमिनी, एस.ए. ने 03 जनवरी, 2022 को आयुक्त, नगर निगम चंडीगढ़ की अध्यक्षता में आयोजित 'स्मार्ट सिटीज ओपन

डेटा पोर्टल (एससीओडीपी)' के संबंध में एक बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 4 जनवरी, 2022 को आईआईटी भुवनेश्वर के "स्कूल ऑफ अर्थ साइंसेज के भवन के उद्घाटन समारोह" में भाग लिया।

श्री गजेंद्र कुमार, वैज्ञानिक 'एफ' ने नागरिक उड्डयन मंत्रालय (एमओसीए) के सचिव की अध्यक्षता में की गई सिफारिशों के कार्यान्वयन की निगरानी के लिए गठित समिति की 09-01-2022, 18-01-2022 और 08-03-2022 को बैठकों में भाग लिया। "कोझिकोड विमान द्र्यटना जांच रिपोर्ट"।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 11 जनवरी, 2022 को आईसीएमआर द्वारा आयोजित "जलवायु परिवर्तन और स्वास्थ्य" की उच्चाधिकार प्राप्त समिति (पीआरसी) की बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने एनडीएमए के सदस्य और सचिव प्रभारी की अध्यक्षता में टीईआरआई और असम राज्य आपदा प्रबंधन प्राधिकरण और अन्य हितधारकों के साथ "गुवाहाटी टाउन के लिए बाढ़ चेतावनी प्रणाली का विकास" परियोजना के दूसरे और अंतिम वितरण पर चर्चा करने के लिए बैठक में भाग लिया। 12 जनवरी 2021।

डॉ. (श्रीमती) के. नागा रत्ना, वैज्ञानिक 'ई' ने 13-14 जनवरी, 2022 को "वीवीआईपी - भारत के माननीय राष्ट्रपति" की तेलंगाना यात्रा के संबंध में 10 फरवरी, 2022 को तेलंगाना सरकार के मुख्य सचिव द्वारा बुलाई गई बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 19 जनवरी, 2021 को एमएम-III कार्यक्रम के तहत पहली एसआरएमसी बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने संयुक्त राष्ट्र विश्व खाद्य कार्यक्रम (डब्ल्यूएफपी) और कृषि विभाग, भारत सरकार द्वारा संयुक्त रूप से आयोजित "कृषि के लिए सहभागी एकीकृत जलवायु सेवाएं (पीआईसीएसए)" पर सेमिनार में भाग लिया। 19 जनवरी, 2022 को ओडिशा के। डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 19 जनवरी, 2022 को सचिव, एमओईएस की अध्यक्षता में "आईएमडी में खरीद गतिविधियों की स्थिति" पर ऑनलाइन बैठक में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 20 जनवरी, 2022 को विश्व खाद्य कार्यक्रम, भारत के अधिकारियों के साथ "डब्ल्यूएफपी भारत की नई देश रणनीतिक योजना 2023-27 पर राष्ट्रीय परामर्श" पर ऑनलाइन बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 20 जनवरी, 2022 को विश्व खाद्य कार्यक्रम, संयुक्त राष्ट्र द्वारा आयोजित "अनुकूलन निधि प्रस्ताव विकास" पर बैठक की अध्यक्षता की।

एम.सी. चंडीगढ़ और श्री मनमोहन सिंह, वैज्ञानिक 'एफ' ने 24 जनवरी, 2022 को हरियाणा निवास, सेक्टर-3, चंडीगढ़ में माननीय मुख्यमंत्री हरियाणा की अध्यक्षता में आयोजित हरियाणा राज्य सूखा राहत एवं बाढ़ नियंत्रण बोर्ड की 53^{वी} बैठक में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ', डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी', और डॉ. आशा लटवाल, वैज्ञानिक 'सी' ने आईसीएआर-एनआरसीजी, पुणे, आईएमडी, पुणे और एनआईसी के बीच सहयोगात्मक परियोजना प्रस्ताव "अंगूर उत्पादकों के लिए मौसम पूर्वानुमान, अलर्ट और सलाह के प्रसार के लिए मौबाइल ऐप 'अंगूर सलाहकार' का विकास" के लिए परियोजना घटकों पर चर्चा करने के लिए ऑनलाइन बैठक में भाग लिया। मुंबई 27 जनवरी 2022।

श्री बी. पी. यादव, वैज्ञानिक 'एफ', श्री राहुल सक्सैना, वैज्ञानिक 'एफ', डॉ. अशोक कुमार दास, वैज्ञानिक 'ई', श्री अशोक राजा, वैज्ञानिक 'सी', श्री एस. के. माणिक, वैज्ञानिक 'सी' और सुश्री हेमलता भारवानी, वैज्ञानिक 'सी' ने 28 जनवरी, 2022 को भारत में दो चिन्हित स्थानों के लिए SASIAFFGS भूस्खलन संवर्द्धन पर सहयोगात्मक पायलट चरण के काम के लिए एचआरसी, जीएसआई और एनआरएससी के साथ ऑनलाइन बैठक में भाग लिया।

श्री यू. के. शेंडे, वैज्ञानिक 'ई' ने दिनांक 28 जनवरी, 2022 को "विमानन मौसम निर्णय समर्थन प्रणाली की समीक्षा" के संबंध में एक ऑनलाइन बैठक में भाग लिया।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई' ने 31 जनवरी 2022 को "एमओईएस एनडब्ल्यूपी एचपीसीएस" बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 1 फरवरी, 2022 को "भारतीय तटरक्षक बल के स्थापना दिवस समारोह" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 3 फरवरी, 2022 को "INCOIS के **24**^{वें} स्थापना दिवस समारोह" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने आईएमडी, पृथ्वी विज्ञान मंत्रालय, आईआईटीएम पुणे, एनसीएमआरडब्ल्यूएफ नोएडा, सेबी, नेशनल कमोडिटी एंड डेरिवेटिट्स एक्सचेंज लिमिटेड और वित्त मंत्रालय के विरष्ठ अधिकारियों के साथ अतिरिक्त की अध्यक्षता में आयोजित बैठक में भाग लिया। 3 फरवरी, 2022 को प्रतिभूति अनुबंध (विनियमन) अधिनियम, 1956 की धारा 2 (बीसी) के तहत कमोडिटी डेरिवेटिट्स व्यापार के लिए अधिसूचित वस्तुओं की सूची में "मौसम" को शामिल करने पर वित्त मंत्रालय के सचिव।

डॉ. (श्रीमती) के. नागा रत्ना, वैज्ञानिक 'ई' ने हैदराबाद में "वीवीआईपी - भारत के माननीय प्रधान मंत्री की यात्रा" की व्यवस्था के लिए 3 फरवरी, 2022 को तेलंगाना सरकार के मुख्य सचिव द्वारा बुलाई गई एक समन्वय बैठक में भाग लिया।

डॉ. पुलक गुहाठाकुरता, वैज्ञानिक 'एफ', डॉ. दिव्या सुरेंद्रन', वैज्ञानिक 'सी' और आरसीसी आईएमडी, पुणे, यूके मेट कार्यालय और RIMES के सहयोगियों ने 8 फरवरी 2022 को क्षेत्रीय जलवायु केंद्र (आरसीसी), पुणे द्वारा ऑनलाइन आयोजित आगामी ग्रीष्मकालीन मानसून SASCOF22 के लिए पूर्व-तैयारी बैठक में भाग लिया था।

श्री यू. के. शेंडे, वैज्ञानिक 'ई' ने 8 फरवरी, 2022 को डीजीएम, आईएमडी की अध्यक्षता में "भारतीय हवाईअड्डा प्राधिकरण (एएआई) के साथ दृष्टि, आरवीआर, उपकरण स्पेयर आदि की चर्चा और लंबित मृद्दों" पर एक ऑनलाइन बैठक में भाग लिया है।

डॉ. कृपान घोष, वैज्ञानिक 'एफ', डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' और डॉ. आशा लटवाल, वैज्ञानिक 'सी', 9 फरवरी, 2022 को डीजीएम, आईएमडी, नई दिल्ली की अध्यक्षता में आईएमडी, नई दिल्ली, आईएमडी, पुणे और आईएमडी के आरएमसी और एमसी के वरिष्ठ वैज्ञानिकों और अधिकारियों के साथ विजन 2047 के संबंध में विचार-मंथन बैठक।

श्री यू. के. शेंडे, वैज्ञानिक 'ई' ने "मेट के स्वदेशी विकास के कार्यात्मक समूह" पर एक ऑनलाइन बैठक में भाग लिया। माननीय की अध्यक्षता में उपकरण"। डीजीएम, मुख्यालय, नई दिल्ली द्वारा 11 फरवरी, 2022 को डिजिटल स्नो गेज स्थापना पर प्रस्तुतिकरण दिया गया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 15 फरवरी, 2022 को "मौसम पूर्वानुमान के उपयोग के लिए सीओआरएस नेटवर्क" के संबंध में पंचायती राज मंत्रालय के संयुक्त सचिव श्री आलोक प्रेम नागर के साथ बैठक में भाग लिया।

श्री यू. के. शेंडे, वैज्ञानिक 'ई' ने माननीय की अध्यक्षता में "विमानन मौसम निर्णय समर्थन प्रणाली (एडब्ल्यूडीएसएस)" पर एक ऑनलाइन बैठक में भाग लिया। 18 फरवरी, 2022 को डीजीएम, मुख्यालय, नई दिल्ली।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 18 फरवरी, 2022 को सचिव, पर्यावरण, वन एवं जलवायु परिवर्तन मंत्रालय की अध्यक्षता में 'अनुकूलन' पर बैठक में भाग लिया।

श्री गजेंद्र कुमार, वैज्ञानिक 'एफ' ने 22 फरवरी, 2022 को आगामी गोवा हवाई अड्डे पर वीसी के माध्यम से एएआई-आईएमडी-जीजीआईएएल के बीच संयुक्त समन्वय बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 23 फरवरी, 2022 को 'एग्रोमेट रिस्क मैनेजमेंट पर विशेषज्ञ टीम', SERCOM, WMO की बैठक में भाग लिया। डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 24 फरवरी, 2022 को भारत में अमेरिकन चैंबर ऑफ कॉमर्स द्वारा आयोजित "हाई परफॉर्मेंस कंप्यूटिंग (एचपीसी): ड्राइविंग इंडिया डिजिटल ट्रांसफॉर्मेंशन" में मुख्य भाषण दिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' और डॉ. आशा लटवाल, वैज्ञानिक 'सी' ने 24 फरवरी, 2022 को महाराष्ट्र कृषि विभाग द्वारा आयोजित "आईएमडी और डीओए अनुप्रयोगों के बीच सलाहकार मॉड्यूल के एकीकरण पर चर्चा" के लिए एक ऑनलाइन बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 24 फरवरी, 2022 को मौसम की भविष्यवाणी और यह कई वर्षों में कैसे विकसित हुआ है, को समर्पित एपिसोड के लिए माइक्रोसॉफ्ट सीरीज़ के पॉडकास्ट साक्षात्कार में भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने यूनेस्को (यूनेस्को-आईओसी) के अंतर सरकारी महासागरीय आयोग द्वारा आयोजित "समुद्र स्तर की चेतावनी और शमन प्रणाली (टीओडब्ल्यूएस-डब्ल्यूजी-एक्सवी) से संबंधित सुनामी और अन्य खतरों पर कार्य समूह" की पंद्रहवीं बैठक में एक पर्यवेक्षक के रूप में भाग लिया। 24-25 फरवरी, 2022 को ऑनलाइन माध्यम से।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 26 फरवरी, 2022 को मुख्य वक्ता के रूप में साल भर चलने वाले कार्यक्रम आजादी का अमृत महोत्सव के उद्घाटन समारोह में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 28 फरवरी, 2022 को नॉर्थ ब्लॉक, नई दिल्ली में सिक्योरिटी (सुरक्षा) की अध्यक्षता में आयोजित 'नेशनल वॉर बुक' पर बैठक में भाग लिया।

"एपीआई से संबंधित मामले" पर एनडीएमए के डॉ. संजय शर्मा के साथ एक बैठक/चर्चा। वेब-डीसीआरए से संबंधित मोबाइल ऐप में एसएमएस और व्हाट्सएप सुविधाओं का आयोजन आईएमडी में 3 मार्च, 2022 को डॉ. एम. महापात्र, महानिदेशक, आईएमडी की अध्यक्षता में किया गया था।

श्री बी. पी. यादव, प्रमुख हाइड्रोमेट, श्री राहुल सक्सेना, वैज्ञानिक 'एफ', डॉ. अशोक कुमार दास, वैज्ञानिक 'ई', श्री अशोक राजा एस के, श्री. एस के माणिक वैज्ञानिक 'सी' ने 4 मार्च, 2022 को एफएमओ पटना के अधिकारियों और बिहार सरकार के अधिकारियों के साथ "हाइड्रोमेट सेवाओं के विस्तार" के संबंध में एक आभासी बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने मेफेयर लैगून, भुवनेश्वर में इंस्टीट्यूट फॉर मलेरिया एंड क्लाइमेट सॉल्यूशंस, भुवनेश्वर, सरकार द्वारा आयोजित "स्वस्थ भविष्य का पूर्वानुमान कॉन्क्लेव" में सम्मानित अतिथि के रूप में भाग लिया। 8 मार्च, 2022 को ओडिशा और आईएमडी की संयुक्त पहल का उद्देश्य ओडिशा राज्य में मलेरिया के कारण मृत्यु दर और रुग्णता को कम करना है।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने तमिलनाडु सरकार के सहयोग से "एसडीएमए के पहले क्षेत्रीय सम्मेलन" में भाग लिया, जिसमें तमिलनाडु, कर्नाटक, केरल, आंध्र प्रदेश, ओडिशा, पश्चिम बंगाल, गोवा के 11 तटीय और द्वीप राज्य शामिल थे। 8-9 मार्च, 2022 के दौरान अंडमान और निकोबार द्वीप, दादरा और नगर हवेली और दमन और दीव।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 8 मार्च, 2022 को विभिन्न संस्थानों/एजेंसियों द्वारा "सत्र II-वैज्ञानिक और तकनीकी नवाचार" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 8 मार्च, 2022 को कटक में आयोजित "सतत भविष्य के लिए कृषि (कृषि-विजन 2022)" विषय पर अंतर्राष्ट्रीय सम्मेलन में विशेष सत्र में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 8 मार्च, 2022 को गुरुग्राम में राष्ट्रीय राजधानी क्षेत्र और आसपास के क्षेत्रों में वायु गुणवता प्रबंधन आयोग (सीएक्यूएम) द्वारा आयोजित "स्वच्छ वायु" की दिशा में संवाद में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 11 मार्च, 2022 को आईएमडी नई दिल्ली में गुरुराम और फरीदाबाद जिलों में 'एडब्ल्यूएस और वायु गुणवत्ता निगरानी प्रणालियों की स्थापना' के लिए साइटों को अंतिम रूप देने के लिए

'जी' ने जीएमडीए, गुड़गांव और आईएमडी अधिकारियों के बीच बैठक की अध्यक्षता की।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने परमाणु ऊर्जा उत्पादन केंद्रों के लिए 'मौसम पूर्वानुमान के प्रावधान' के लिए 14 मार्च, 2022 को भारतीय परमाणु ऊर्जा निगम (एनपीसीआईएल) के अधिकारियों के साथ आभासी बैठक में भाग लिया।

श्री गजंद्र कुमार, वैज्ञानिक 'एफ' ने आईएमडी और कन्नूर इंटरनेशनल एयरपोर्ट लिमिटेड (केआईएएल) के बीच समझौता जापन को नवीनीकृत करने के मुद्दों पर चर्चा करने के लिए 15 मार्च, 2022 को केआईएएल कन्नूर के साथ वीसी के माध्यम से बैठक में भाग लिया।

श्री ए. के. सिंह, वैज्ञानिक 'ई' ने एनआईटी सिक्किम के लिए डीजीआरई द्वारा एक्स-बैंड डीडब्ल्यूआर की खरीद के लिए डीजीआरई चंडीगढ़ द्वारा 16 मार्च, 2022 और 17 मार्च, 2022 को आयोजित टीसीई बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 16 मार्च, 2022 को POSOCO के साथ "बिजली क्षेत्र की तैयारियों के लिए मौसम सेवाओं" पर वीसी में भाग लिया।

एम.सी. चंडीगढ़ ने 17 मार्च, 2022 को जीकेएमएस योजना के तहत प्रगति पर चर्चा करने के लिए हरियाणा और पंजाब राज्यों के सभी एएमएफयू और डीएएमयू के साथ एक ऑनलाइन बातचीत बैठक आयोजित की।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 21 मार्च, 2022 को एनसीएमआरडब्ल्यूएफ में मुख्य अतिथि के रूप में 'वार्षिक हिंदी वैज्ञानिक संगोष्ठी' का उद्घाटन किया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 21-25 मार्च, 2022 के दौरान "नाउकास्टिंग के लिए उत्पादों की व्याख्या और अनुप्रयोग" पर कार्यशाला की तैयारियों का अवलोकन करने के लिए बैठक में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने आईटी-आधारित निर्णय समर्थन प्रणाली के विकास के लिए भारत सरकार के विभिन्न संगठनों/विभागों से प्राप्त फीडबैक की प्रगति और स्थिति की समीक्षा करने के लिए ऑनलाइन बैठक में भाग लिया। 23 मार्च, 2022 को सचिव DoWR RD & GR द्वारा "एकीकृत जल और फसल सूचना और प्रबंधन प्रणाली (IWCIMS)"।

24 मार्च, 2022 को श्री कृष्ण एस. वत्स की अध्यक्षता में देश में बिजली गिरने से होने वाली मौतों को कम करने के लिए उठाए जाने वाले विभिन्न उपायों पर चर्चा के लिए आईएमडी के महानिदेशक डॉ. एम. महापात्र ने बैठक में भाग लिया।

श्री गजेंद्र कुमार, वैज्ञानिक 'एफ' और सी. एस. तोमर, वैज्ञानिक 'ई' ने वीसी के माध्यम से 28-30 मार्च, 2022 तक "आईसीएओ मेट/आईई डब्ल्यूजी/20: मौसम विज्ञान सूचना विनिमय कार्य समूह की बीसवीं बैठक" में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 30 मार्च, 2022 को "भारतीय मानक ब्यूरो की सीईडी 59 स्मार्ट सिटी अनुभागीय समिति" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 31 मार्च, 2022 को "एसओएफएफ पीयर एडवाइजर्स किक ऑफ मीटिंग" में भाग लिया।

डॉ. पी. गुहाठाकुरता, वैज्ञानिक 'एफ', डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई', डॉ. सत्यभान बिशोय रत्न, वैज्ञानिक 'ई', डॉ. सत्यभान बिशोय रत्न, वैज्ञानिक 'ई', डॉ. दिव्या सुरंद्रन, वैज्ञानिक 'सी', डॉ. एस. डी. सनप, वैज्ञानिक 'सी', सुश्री आरती बंडगर, वैज्ञानिक 'सी', सुश्री स्मिता नायर, मौसम विज्ञानी 'ए' और श्री प्रसाद भोर, मौसम विज्ञानी 'ए' ने 5-7 अप्रैल और 19-21 अप्रैल, 2022 तक और एसएएससीओएफ-22 सीएसयूएफ के लिए 26-28 अप्रैल, 2022 तक ऑनलाइन प्री-सीओएफ बैठक में भाग लिया।

डॉ. गीता अग्निहोत्री, वैज्ञानिक 'एफ' और डॉ. राजवेल मिनिकम, वैज्ञानिक 'ई', डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई', डॉ. शंकर नाथ, वैज्ञानिक 'ई' और श्री प्रमोद कुमार, वैज्ञानिक 'सी' ने 8-9 अप्रैल, 2022 को आयोजित "एएमआर/एसीआर 2022 बैठक" में भाग लिया है।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने अपर की अध्यक्षता में आयोजित "संचालन समिति की दूसरी बैठक" में भाग लिया। भारत के अनुकूलन संचार के संबंध में 11 अप्रैल, 2022 को सचिव, पर्यावरण, वन एवं जलवायु परिवर्तन मंत्रालय।

डॉ. के. के. सिंह, वैज्ञानिक जी और प्रमुख, एएएसडी और डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 12 अप्रैल, 2022 को किसानों द्वारा कृषि मौसम संबंधी जानकारी के उपयोग के लिए सूचना प्रौद्योगिकी मंत्रालय के साथ प्रसार प्रणाली के विकास पर चर्चा करने के लिए बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 13 अप्रैल, 2022 को "उत्तराखंड और सिक्किम राज्यों में जलवायु सेवाओं" के संबंध में यूएनडीपी की टीम के साथ चर्चा बैठक में भाग लिया।

डॉ. एम. रिवचंद्रन, सिचव, एमओईएस और डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 18 अप्रैल को "मानस्न संभावनाएं - 2022 के लिए अनुमान" के संबंध में विज्ञान और प्रौद्योगिकी, पर्यावरण, वन और जलवायु परिवर्तन पर विभाग से संबंधित संसदीय स्थायी सिमिति में भाग लिया। 2022.

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी', डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' और डॉ. शंकर नाथ, वैज्ञानिक 'ई' ने 22 अप्रैल, 2022 को तमिलनाडु आपदा एजेंसी और प्रबंधन के संबंध में चर्चा बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और आईएमडी के अन्य विशेषज्ञों ने वन पर्यावरण और जलवायु परिवर्तन विभाग, सरकार द्वारा आयोजित "ओडिशा संदर्भ में वैश्विक जलवायु मॉडल की भेद्यता विश्लेषण और डाउनस्केलिंग" पर आभासी बैठक में भाग लिया। 25 अप्रैल, 2022 को ओडिशा के।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 26 अप्रैल, 2022 को वेबएक्स के माध्यम से आयोजित "भूस्थानिक सूचना अनुभागीय समिति, एलआईटीडी-22" की आठवीं बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 27 अप्रैल, 2022 को डीडी नेशनल में "चक्रवात चेतावनी और बचाव" विषय पर पैनल चर्चा "आपदा का सामना" की रिकॉर्डिंग में पैनलिस्ट के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 28-29 अप्रैल, 2022 को आईआईटीएम की अनुसंधान सलाहकार सिमिति की बैठक में और 30 अप्रैल, 2022 को वस्तुतः गवर्निंग काउंसिल की बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने प्रधान मंत्री के प्रधान सचिव की अध्यक्षता में 2 और 5 मई, 2022 को "हीट वेव और मानसून तैयारी" पर वीसी बैठक में भाग लिया और 5 मई, 2022 को एक प्रस्त्ति दी।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 5 मई, 2022 को जल शक्ति मंत्रालय, नई दिल्ली द्वारा "एकीकृत जल और फसल सूचना प्रबंधन प्रणाली (आईडब्ल्यूसीआईएमएस) विकसित करने के लिए संगठन विवरण दस्तावेज़" के संबंध में बैठक में भाग लिया।

डॉ. के. के. सिंह, वैज्ञानिक 'जी' ने एक्रॉस-आईएमडी के तहत परियोजनाओं की प्रगति की निगरानी करने और गतिविधियों के सफल कार्यान्वयन के लिए उपयुक्त उपचारात्मक उपाय सुझाने के लिए 2 मई, 2022 को आईएमडी की "परियोजना निगरानी और सलाहकार समिति (पीएमएसी) की 9^{वीं} बैठक" की अध्यक्षता की।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 10 तारीख को सुरक्षित अपतटीय संचालन के लिए अनुकूलित बुलेटिन के निर्माण और प्रसार के लिए अवलोकन, मॉडलिंग और डेटा रिसेप्शन प्रणाली को बढ़ाने के प्रस्ताव को अंतिम रूप देने के लिए सचिव, एमओईएस की अध्यक्षता में आईएनसीओआईएस के निदेशक के साथ बैठक में भाग लिया। मई, 2022.

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 10 मई, 2022 को पश्चिम मध्य बंगाल की खाड़ी के ऊपर गंभीर चक्रवाती तूफान 'आसानी' की तैयारियों की समीक्षा के लिए राष्ट्रीय कार्यकारी समिति की बैठक में भाग लिया।

डॉ. पुलक गुहाठाकुरता, वैज्ञानिक 'एफ' ने 10 मई, 2022 को जलवायु परिवर्तन और मानव स्वास्थ्य पर राष्ट्रीय कार्यक्रम (एनपीसीसीएचएच) के तहत "वेक्टर बोर्न डिजीज I - एनआईएमआर - वेक्टर बोर्न डिजीज डिलिवरेबल्स (एचएपी) को टीईजी वीबीडी में साझा करना" में भाग लिया।

डॉ. डी. आर. पटनायक, वैज्ञानिक 'एफ' ने 12 मई, 2022 को एनडीएमए भवन में "बंगाल की खाड़ी बहु- क्षेत्रीय तकनीकी और आर्थिक सहयोग पहल (बिम्सटेक)" की पहली बैठक में भाग लिया है।

आईएमडी के महानिदेशक **डॉ. एम. महापात्र** ने 17 मई, 2022 को "वेक्टर जनित रोगों के लिए जलवायु-आधारित कार्यों को मानकीकृत करने" के संबंध में मलेरिया और जलवायु समाधान संस्थान (आईएमएसीएस) के निदेशक डॉ. कौशिक सरकार के साथ बैठक में भाग लिया।

डॉ. गीता अग्निहोत्री, वैज्ञानिक 'एफ' और श्री ए. प्रसाद, वैज्ञानिक 'डी' ने 17 मई, 2022 को सीडब्ल्यूसी, बेंगलुरु द्वारा आयोजित "बाढ़ पूर्वानुमान पर हितधारकों की बैठक" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 23 मई, 2022 को "डब्ल्यूसीएसएसपी भारत कार्यकारी समिति की बैठक" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 24 मई, 2022 को डब्ल्यूएमओ की दूसरी बैठक "व्यवस्थित अवलोकन और वित्तपोषण स्विधाएं" में भाग लिया।

डॉ. राजावेल मनिकम, वैज्ञानिक। 'ई' ने 25 मई, 2022 को परियोजना निदेशक, फ़ूट्स के साथ "एकीकरण के संबंध में आईएमडी की कार्यान्वयन योजना" पर बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 25 मई, 2022 को हाइड्रोलॉजिकल मूल्यांकन और मौसम संबंधी डेटा के संबंध में सीआईआई जल संस्थान के सीईओ और कार्यकारी निदेशक **डॉ. कपिल कुमार नरूला** के साथ बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने नवीकरणीय ऊर्जा क्षेत्र के लिए मौसम सेवाओं के लिए 26 मई, 2022 को **श्री अभिनव सक्सेना**, अदानी पावर के साथ बैठक में भाग लिया।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 26 मई, 2022 को तकनीकी प्रगति, 2022-23 के लिए आगामी कार्य योजना और पहल के अगले चरण में एनएसडीआई/एसएसडीआई गतिविधियों के संबंध में "एनएसडीआई नोडल अधिकारियों और राज्य एसडीआई पीआई" बैठक में वीसी बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 27 मई, 2022 को आईएमडी रिम्स यूनिट, आईआरयू पर प्रोटोकॉल और प्रक्रियाओं के संबंध में आरआईएमईएस कार्यक्रम इकाई के निदेशक, श्री ए. आर. सुब्बैया के साथ बैठक में भाग लिया।

श्री बी. पी. यादव, वैज्ञानिक 'एफ', श्री राहुल सक्सैना, वैज्ञानिक 'एफ', डॉ. ए. के. दास, वैज्ञानिक 'ई', श्री एस. के. माणिक, वैज्ञानिक 'सी', श्री अशोक राजा, वैज्ञानिक 'सी' और सुश्री हेमलता भारवानी, वैज्ञानिक 'सी' ने एनडब्ल्यूपी, एनसीएमआरडब्ल्यूएफ, आईआईटीएम और सभी आरएमसी, एमसी, एफएमओ के अधिकारियों के साथ 30 मई, 2022 को 'एनडब्ल्यूपी रिसर्च पर ऑपरेशनल कमेटी' की बैठक में भाग लिया।

30 मई 2022 को एनडब्ल्युपी बैठक

डॉ. एम. महापात्र, महानिदेशक, आईएमडी, श्री बी. पी. यादव, वैज्ञानिक 'एफ' एवं डीडीजीएम (एच), श्री राहुल सक्सेना, वैज्ञानिक 'एफ' ने 2 जून, 2022 को नई दिल्ली में देश में बाढ़ की तैयारियों की समीक्षा के लिए माननीय गृह मंत्री की अध्यक्षता में बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 3 जून, 2022 को नॉर्थ ब्लॉक, नई दिल्ली में श्री अमरनाथ जी यात्रा की व्यवस्था की प्रगति की समीक्षा के लिए माननीय केंद्रीय गृह मंत्री की अध्यक्षता में बैठक में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 3 जून, 2022 को एआईसीआरपीएएम परियोजना के तहत आईसीएआर-सीआरआईडीए द्वारा आयोजित "एग्रोक्लाइमैटिक एटलस ऑफ इंडिया: ए रिविजिट" पर विचार-मंथन सत्र में भाग लिया।

श्री एस. सी. भान, वैज्ञानिक 'एफ' और श्री एच.एस. साहनी, वैज्ञानिक 'ई' ने 7 जून, 2022 को हितधारकों के बीच अंतर-मंत्रालयी घोषणा और "एक स्वास्थ्य" गतिविधि के लिए प्रस्तावित कार्रवाई पर चर्चा करने के लिए स्वास्थ्य और परिवार कल्याण मंत्रालय के संयुक्त सचिव (पीएच) श्री लव अग्रवाल की अध्यक्षता में आयोजित एक बैठक में भाग लिया। निर्माण भवन, नई दिल्ली में।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 8 जून, 2022 को अपतटीय अन्वेषण और उत्पादन ऑपरेटरों के लिए अनुकूलित पूर्वानुमान उत्पन्न करने के लिए टिप्पणियों को बढ़ाने के लिए परियोजना प्रस्ताव पर चर्चा करने के लिए महानिदेशक, हाइड्रोकार्बन के साथ आभासी बैठक में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 8 जून, 2022 को कृषि आयुक्तालय, पुणे, महाराष्ट्र द्वारा आयोजित प्रधानमंत्री फसल बीमा योजना (पीएमएफबीवाई) "राज्य स्तरीय फसल बीमा समन्वय समिति की बैठक" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 9 जून, 2022 को आईएमडी के अन्य विरष्ठ अधिकारियों के साथ एनडीएमए भवन, नई दिल्ली में "आपदा जोखिम प्रबंधन" पर हिंद महासागर रिम एसोसिएशन (आईओआरए) कार्य समूह की पहली बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 13 जून, 2022 को डब्ल्यूएमओ/जीएडब्ल्यू कार्यान्वयन योजना बैठक में वीसी के माध्यम से भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 16 जून, 2022 को माननीय मंत्री, MoES की अध्यक्षता में आकाश तत्व पर एक अंतर्राष्ट्रीय सम्मेलन सह प्रदर्शनी के आयोजन के लिए योजना तैयार करने के संबंध में बैठक में 'जी' ने भाग लिया।

श्री मनमोहन सिंह, वैज्ञानिक 'एफ' ने 15 जून, 2022 को मिनी सचिवालय हरियाणा, चंडीगढ़ में हरियाणा राज्य आपदा प्रबंधन प्राधिकरण (एसडीएमए) द्वारा आयोजित आगामी "दक्षिण पश्चिम मानसून 2022" के संबंध में बैठक में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 15 जून, 2022 को आईएमडी, नई दिल्ली और आईआईटी, मद्रास के अधिकारियों के साथ "मंडी और मौसम की जानकारी की भाषण आधारित प्रणाली के विकास और तैनाती" पर चर्चा करने के लिए ऑनलाइन बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 15 जून, 2022 को "मौसम संबंधी उपग्रहों के लिए डब्ल्यूएमओ के समन्वय समूह (सीजीएमएस) -50" बैठक और 21 जून, 2022 को विशेष कार्यक्रम में भाग लिया।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने वार्षिक स्थिति रिपोर्ट के संबंध में 16 जून, 2022 को विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) द्वारा वर्चुअल मोड में आयोजित "टीटी जीआईएससी बैठक" में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 16 जून, 2022 को सीआरएस, आईएमडी, पुणे और आईआईटी, बॉम्बे के अधिकारियों के साथ "जल प्रबंधन और फसल स्वास्थ्य परियोजना" के बारे में चर्चा करने के लिए ऑनलाइन बैठक में भाग लिया।

श्री शिविंदर सिंह, वैज्ञानिक 'सी' ने 23 जून, 2022 को वीडियो कॉन्फ्रेंसिंग के माध्यम से मुख्य सचिव, हरियाणा की अध्यक्षता में आयोजित "हरियाणा राज्य सूखा राहत एवं बाढ़ नियंत्रण बोर्ड की 53^{दी} बैठक" में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ', डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' और डॉ. आशा लटवाल, वैज्ञानिक 'सी' ने 28 जून 2022 को कृषि विभाग, महाराष्ट्र सरकार, महाराष्ट्र रिमोट सेंसिंग एप्लीकेशन सेंटर (एमआरएसएसी) नागपुर और एएएसडी, नई दिल्ली के अधिकारियों के साथ "महाएग्रीटेक पोर्टल पर आईएमडी मौसम पूर्वानुमान और कृषि मौसम सलाह के एकीकरण" के संबंध में एक बैठक में भाग लिया।

डॉ. एच. आर. बिस्वास, वैज्ञानिक 'ई' ने एसी और सीडीआरसी, डीएएफई, सरकार की अध्यक्षता में "खरीफ के लिए सूखा प्रबंधन पर फसल मौसम निगरानी समूह समिति की बैठक - 2022" में भाग लिया। ओडिशा सरकार, 4 और 25 जुलाई, 2022 को वेबेक्स लिंक के माध्यम से वर्चुअल मोड पर और कृषि उत्पादन आयुक्त,

सरकार की अध्यक्षता में। ओडिशा में, 1, 8 और 16 अगस्त, 2022 को माइक्रोसॉफ्ट टीमों के माध्यम से वर्चुअल मोड पर।

श्री आशीष कुमार, वैज्ञानिक 'सी' ने 15 जुलाई, 2022 को चालू मानसून सीजन के दौरान आपदा प्रबंधन के लिए सूचना के प्रसार के प्रोटोकॉल के संबंध में बिहार राज्य आपदा प्रबंधन प्राधिकरण, पटना द्वारा आयोजित एक बैठक में भाग लिया।

डॉ. डी. आर. पटनायक, वैज्ञानिक 'एफ' ने 16 जुलाई, 2022 को आयोजित जलवायु परिवर्तन अध्ययन संस्थान (आईसीसीएस), कोट्टायम की अनुसंधान परिषद (आरसी) की पहली बैठक में (ऑनलाइन) भाग लिया है। हाइड्रोकार्बन महानिदेशालय, आईएमडी और आईएनसीओआईएस के वरिष्ठ अधिकारियों ने अपतटीय उद्योगों के लिए अनुकूलित स्थान विशिष्ट पूर्वानुमान उत्पन्न करने के लिए अवलोकन नेटवर्क के विस्तार के प्रस्ताव को अंतिम रूप देने के लिए 19 जुलाई, 2022 को बैठक में भाग लिया।

डॉ. एम. राजावेल, वैज्ञानिक 'ई' ने 19 जुलाई, 2022 को एनकेएएफसी, धारवाइ की गतिविधियों को जारी रखने के संबंध में एमसी बेंगलुरु और एनकेएएफसी धारवाइ की बैठक में भाग लिया।

श्री विवेक सिन्हा, वैज्ञानिक 'एफ' ने 21 जुलाई, 2022 को नगर राजभाषा कार्यान्वयन समिति, पटना द्वारा आयोजित एक ऑनलाइन बैठक में भाग लिया है।

डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' और डॉ. आशा लटवाल, वैज्ञानिक 'सी' ने डॉ. के. के. सिंह, वैज्ञानिक 'जी' की अध्यक्षता में "जीकेएमएस के तहत गतिविधियों की वर्तमान स्थिति की समीक्षा" के लिए ऑनलाइन बैठक में भाग लिया। 25 जुलाई, 2022 को आईएमडी के आरएमसी और एमसी के निदेशक/प्रमुख, एएएसडी, आईएमडी, नई दिल्ली और एग्रीमेट डिवीजन, आईएमडी, पुणे के वैज्ञानिकों, एएमएफयू के नोडल अधिकारियों और तकनीकी अधिकारियों के साथ।

डॉ. सथी देवी, वैज्ञानिक 'एफ' ने 26 जुलाई, 2022 को एनडीएमए भवन में ब्रिक्स विशेषज्ञ स्तर की कार्यशाला

(डॉ. ए. के. दास, वैज्ञानिक 'ई' और श्रीमती मोनिका शर्मा, वैज्ञानिक 'डी' के साथ) में भाग लिया और 'प्रारंभिक चेतावनी' पर एक प्रस्तुति दी। आईएमडी की सेवाएं'.

श्री अभिषेक आनंद, वैज्ञानिक 'सी' ने 27 जुलाई, 2022 को बाढ़ की तैयारियों के संबंध में एनडीएमए द्वारा "टेबल टॉप एक्सरसाइज" में भाग लिया।

श्री जे. पी. गुप्ता, वैज्ञानिक 'एफ' ने माननीय मुख्यमंत्री, उत्तर प्रदेश सरकार की अध्यक्षता में उत्तर प्रदेश में वर्षा की वर्तमान स्थिति एवं कम वर्षा के पूर्वानुमान के संबंध में बैठक में भाग लिया। 1 अगस्त, 2022 को उत्तर प्रदेश के लखनऊ में।

श्री राजा शेखर शिवराजु, वैज्ञानिक 'सी' ने 1 अगस्त, 2022 को आयुक्त, वसई-विरार, महाराष्ट्र की अध्यक्षता में तटीय सुरक्षा समन्वय समिति की बैठक में भाग लिया।

श्री राहुल एम., वैज्ञानिक 'सी' ने 3 अगस्त, 2022 को आईएमडी और एमआईएस गूगल को शामिल करते हुए "एआई आधारित नाउकास्टिंग के कार्यान्वयन" पर बैठक में भाग लिया।

डॉ. ए. भट्टाचार्य, वैज्ञानिक 'सी' और श्री देबदीप चक्रवर्ती, मिले। 'ए', पश्चिम बंगाल के माननीय मुख्यमंत्री की यात्रा पर 3 अगस्त, 2022 को एनएससीबीआई हवाई अड्डे, पीएस में आयोजित समन्वय बैठक में शामिल हुए।

डॉ. पुलक गुहाठाकुरता, वैज्ञानिक 'एफ' ने 5 अगस्त, 2022 को आईसीएमआर-नेशनल इंस्टीट्यूट ऑफ मलेरिया रिसर्च (एनआईएमआर), नई दिल्ली में "वेक्टर-जिनत रोग (वीबीडी) पर जलवायु परिवर्तन के प्रभाव" पर परियोजना समीक्षा समिति (पीआरसी) की बैठक में ऑनलाइन भाग लिया है।

डॉ. रणजीत सिंह, वैज्ञानिक 'एफ' ने 5, 10, 17 और 23 अगस्त, 2022 को सूखे पैरामीटर की निगरानी के लिए राज्य सरकार के साथ सूखा प्रबंधन के लिए फसल मौसम निगरानी समूह (सीडब्ल्यूडब्ल्यूजीडीएम) की बैठक में भाग लिया।

डॉ. शेषकुमार गोरोशी, वैज्ञानिक 'ई' ने टीएनएयू-एसीआरसी-आईएमडी-जीकेएमएस-क्षमता निर्माण बैठक में भाग लिया और 11 अगस्त, 2022 को ग्रामीण कृषि मौसम सेवा (जीकेएमएस) के तहत फसल विकास निगरानी के लिए इसरो-आईएमडी वनस्पति सूचना प्रणाली मंच का उपयोग प्रस्तुत किया।

डॉ. के. के. सिंह, वैज्ञानिक 'जी', डॉ. शेषकुमार गोरोशी, वैज्ञानिक 'ई' और सुश्री प्रियंका सिंह, वैज्ञानिक 'सी' ने 11 अगस्त, 2022 को यूएनडीपी और यूएनडीपी द्वारा संयुक्त रूप से आयोजित जापान द्वारा वित्त पोषित, जलवायु आपातकाल के जवाब में नेट-शून्य उत्सर्जन और जलवायु-लचीला विकास प्राप्त करने के लिए राष्ट्रीय स्तर पर निर्धारित योगदान (एनडीसी) का लाभ उठाने" परियोजना के शुभारंभ में भाग लिया। आईएमडी.

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 12 अगस्त, 2022 को वीसी के माध्यम से "वर्तमान सीजन (2022) के लिए खरीफ फसलों की बुआई की स्थित और मौसम पूर्वानुमान" पर माननीय प्रधान मंत्री के प्रधान सचिव की अध्यक्षता में बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने यूएनडीपी द्वारा आयोजित परियोजना "जलवायु आपातकाल के जवाब में शुद्ध-शून्य उत्सर्जन और जलवायु-लचीला विकास प्राप्त करने के लिए राष्ट्रीय स्तर पर निर्धारित योगदान (एनडीसी) का लाभ उठाना" के शुभारंभ में भाग लिया।

श्री के. एस. होसालिकर, वैज्ञानिक 'जी', डॉ. ए. कश्यपी, वैज्ञानिक 'एफ', डॉ. कृपान घोष, वैज्ञानिक 'एफ', श्री यू. के. शेंडे, वैज्ञानिक 'ई' और डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' ने 12 अगस्त, 2022 को "एनएफसीएस प्रेजेंटेशन" पर ऑनलाइन बैठक में भाग लिया।

श्री. एन. टी. नियास, वैज्ञानिक 'डी' ने 16 अगस्त, 2022 को पर्यावरण और जलवायु परिवर्तन निदेशालय, केरल द्वारा आयोजित जलवायु परिवर्तन पर राज्य कार्य योजना की तैयारी के संबंध में ऑनलाइन चर्चा में भाग लिया।

श्री कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने एनएसडीआई की प्रगति की समीक्षा के लिए 18 अगस्त, 2022 को भौतिक मोड में आयोजित "राष्ट्रीय स्थानिक डेटा इन्फ्रास्ट्रक्चर (एनएसडीआई) कार्यकारी समिति" की 15^{वीं} बैठक में भाग लिया।

श्री सोनम लोटस, वैज्ञानिक 'ई' ने 18 अगस्त, 2022 को श्री सुगत बिस्वास, आईएएस, सचिव आपदा प्रबंधन, लद्दाख की अध्यक्षता में लद्दाख में एडब्ल्यूएस के अवलोकन नेटवर्क को मजबूत करने के संबंध में एक बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 19 अगस्त, 2022 को स्कूल ऑफ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियरिंग, रेवा यूनिवर्सिटी, कर्नाटक द्वारा "मौसम पूर्वानुमान में अत्याधुनिक प्रथाओं और इंजीनियरों की भूमिका" पर आयोजित सूचनात्मक साक्षात्कार में एक संसाधन व्यक्ति के रूप में भाग लिया।

श्री बिक्रम सिंह, वैज्ञानिक 'एफ' ने 19 अगस्त की भारी वर्षा की घटना के लिए जारी मौसम पूर्वानुमान के संबंध में 22 अगस्त, 2022 को सचिव, उत्तराखंड आपदा प्रबंधन प्राधिकरण, उत्तराखंड सरकार की अध्यक्षता में एक बैठक में भाग लिया। श्री बिक्रम सिंह, वैज्ञानिक 'एफ' ने 19 अगस्त की भारी वर्षा की घटना के लिए एम.सी. देहरादून द्वारा जारी "अवलोकित मौसम और पूर्वानुमान और चेतावनियाँ" पर एक प्रस्तुति दी। उन्होंने मौसम पूर्वानुमान को और अधिक प्रभावी बनाने के लिए सुरकंडा जी में डीडब्ल्यूआर के संचालन और उत्तराखंड में अधिक डीडब्ल्यूआर की स्थापना के बारे में भी जानकारी ली।

श्री एस. एम. मेट्री, वैज्ञानिक 'ई' और श्री बी. एस. मुरलीधरा, मौसम विज्ञानी 'बी' ने 19 अगस्त, 2022 को विकास सौधा में जल संसाधन विभाग, भारत सरकार द्वारा बुलाई गई सातवीं तकनीकी मूल्यांकन समिति (टीईसी) की बैठक में भाग लिया।

डॉ. के. नागा रत्न, वैज्ञानिक 'ई' ने माननीय संस्कृति, पर्यटन और डोनर सरकार मंत्री द्वारा आयोजित बैठक में भाग लिया। 26 अगस्त, 2022 को हैदराबाद में कार्यालय प्रमुखों के साथ भारत के।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई', डॉ. सत्यभान बिशोय रत्न, वैज्ञानिक 'ई', सुश्री आरती बंडगर, वैज्ञानिक 'सी' और श्री प्रसाद भोर, मौसम विज्ञानी 'ए' ने एसएएससीओएफ-23 के संचालन के संबंध में 26 अगस्त, 2022 को ऑनलाइन पूर्व तैयारी बैठक में भाग लिया और भाग लिया।

डॉ. राजीब चट्टोपाध्याय, वैज्ञानिक 'ई' ने 26 अगस्त, 2022 को IISBWM कोलकाता और CII प्रायोजित पाठ्यक्रम कार्य में "जलवायु परिवर्तन और सतत विकास लक्ष्य: पूर्वानुमान और जोखिम प्रबंधन" पर एक ऑनलाइन व्याख्यान दिया।

डॉ. एस. बालाचंद्रन, वैज्ञानिक 'एफ' ने 29 अगस्त, 2022 को पूर्वानुमान आवश्यकताओं पर चर्चा करने के लिए तमिलनाडु सरकार के राजस्व प्रशासन आयुक्त, श्री एस. के. प्रभाकर, आईएएस के साथ बैठक की।

डॉ. जी.एन. राहा, वैज्ञानिक 'ई', श्री यू. दास, वैज्ञानिक 'सी' और श्री मनोज बिस्वाल, एस.ए. ने 29 अगस्त, 2022 को डीजीएम की अध्यक्षता में शहरी मौसम विज्ञान सेवा कार्यक्रम की प्रगति पर चर्चा करने के लिए एक बैठक में भाग लिया।

श्री जे. पी. गुप्ता, वैज्ञानिक 'एफ' ने 30 अगस्त, 2022 को प्रमुख सचिव (नमामि गंगे सरकार, यूपी) की अध्यक्षता में "राज्य स्तरीय समिति की बैठक भूजल अनुमान 2022" में भाग लिया।

डॉ. के. के. सिंह, वैज्ञानिक 'जी' और डॉ. साथी देवी, वैज्ञानिक 'एफ' ने 30 तारीख को नई दिल्ली में सुनिश्चित केएमएस 2022-2023 (केवल खरीफ फसल) के दौरान धान/फोर्टिफाइड चावल और मोटे अनाज की खरीद की व्यवस्था पर चर्चा करने के लिए खाद्य और सार्वजनिक वितरण विभाग के सचिव की अध्यक्षता में बैठक में भाग लिया। अगस्त, 2022.

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 31 अगस्त, 2022 को साउथ ब्लॉक, पीएमओ, नई दिल्ली में 2022 में बाढ़ से प्रभावित राज्यों की स्थिति की समीक्षा के लिए माननीय प्रधान मंत्री के प्रधान सचिव की अध्यक्षता में बैठक में भाग लिया।

आईएमडी के महानिदेशक **डॉ. एम. महापात्र** ने उत्तराखंड में पूर्व चेतावनी सेवाओं को मजबूत करने के संबंध में 1 सितंबर, 2022 को उत्तराखंड सरकार के आपदा प्रबंधन विभाग के सचिव **डॉ. रंजीत कुमार सिन्हा** के साथ बैठक की।

डॉ. आर. के. गिरि, वैज्ञानिक 'एफ', आईएमडी ने 1 सितंबर, 2022 को ज़ूम के माध्यम से कार्यान्वयन संस्थाओं और सहकर्मी सलाहकारों के साथ "ट्यवस्थित अवलोकन वित्तपोषण सुविधा कार्यशाला" में भाग लिया।

डॉ. एम. रिवचंद्रन, सिचव, एमओईएस, डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. शंकर नाथ, वैज्ञानिक 'ई' और 1 सितंबर, 2022 को वीसी के माध्यम से प्रधान मंत्री के सलाहकार श्री तरुण कपूर की अध्यक्षता में अवलोकन बिंदु के रूप में "विमान के उपयोग के लिए मौसम पूर्वानुमान" पर बैठक में भाग लिया।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 2 सितंबर,
2022 को "केंद्रीय भूवैज्ञानिक प्रोग्रामिंग बोर्ड (सीजीपीबी)
- जिओइंफॉर्मेंटिक्स और डेटा प्रबंधन पर XI" की 18^{वी} बैठक में भाग लिया।

02 सितंबर 2022 को "भारत के पहाड़ी क्षेत्रों में जुलाई 2022 में अचानक बाढ़ की घटनाएं" विषय पर चर्चा के लिए एचआरसी के साथ एक बैठक आयोजित की गई थी। बैठक में श्री बी. पी. यादव, वैज्ञानिक 'एफ' और डीडीजीएम (एच), श्री राहुल सक्सेना, वैज्ञानिक 'एफ', ने भाग लिया। डॉ. ए. के. दास, वैज्ञानिक 'ई', सुश्री हेमलता, वैज्ञानिक 'सी', श्री अशोक राजा, वैज्ञानिक 'सी' और श्री एस. के. माणिक, वैज्ञानिक सी., एचआरसी की टीम के सदस्यों के साथ हाइड्रोमेट डिवीजन से 'सी'।

डॉ. के. के. सिंह, वैज्ञानिक 'जी', डॉ. एस. डी. अत्री, वैज्ञानिक 'जी', डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 5 सितंबर, 2022 को डीजीएम, एमओईएस की अध्यक्षता में "किसानों द्वारा कृषि मौसम संबंधी जानकारी के उपयोग के लिए पुल सिस्टम के विकास" के लिए बैठक में भाग लिया।

श्री बी. पी. यादव, वैज्ञानिक 'एफ' एवं डीडीजीएम (एच), श्री राह्ल सक्सेना, वैज्ञानिक 'एफ' और डॉ. ए. के. दास, वैज्ञानिक 'ई' सुश्री हेमलता, वैज्ञानिक 'सी', श्री अशोक राजा, वैज्ञानिक 'सी' ने 6-7 सितंबर 2022 को आयोजित एसडब्ल्यूएफपी-दक्षिण एशिया के लिए क्षेत्रीय उप कार्यक्रम प्रबंधन टीम (आरएसएमटी) की बैठक में भाग लिया।

एसडब्ल्यूएफपी-दक्षिण एशिया के लिए क्षेत्रीय उप कार्यक्रम प्रबंधन टीम (आरएसएमटी) दिनांक 7 सितंबर, 2022

डॉ. एस. द्विवेदी, वैज्ञानिक 'सी', श्री आर. के. महापात्र, मौसम विज्ञानी 'बी' और श्री एस. पात्रा, एस. ए. ने डीएएफपी, सरकार के तहत डब्ल्यूएफपी द्वारा आयोजित एक ऑनलाइन प्रशिक्षण में भाग लिया। 5-9 सितंबर, 2022 तक PICSA टूल का उपयोग करने वाले मास्टर ट्रेनर्स और एक्सटेंशन वर्कर्स पर ओडिशा का।

श्री के. एन. मोहन, वैज्ञानिक 'जी' और डॉ. एस. ओ. शॉ, वैज्ञानिक 'एफ' को "जलवायु परिवर्तन" पर सेमिनार में भाग लेने के लिए 11 सितंबर, 2022 को राजभवन गुवाहाटी (असम) में आमंत्रित किया गया था।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' और **डॉ. शंकर नाथ**, वैज्ञानिक 'ई' ने 12 सितंबर, 2022 को ऑनलाइन मोड के माध्यम से आयोजित क्षेत्रीय एसोसिएशन II (आरए II) इंफ्रास्ट्रक्चर वर्किंग ग्रुप (डब्ल्यूजी-आई) विशेषज्ञ टीम की बैठक में भाग लिया।

श्री सुरेंद्र पॉल, वैज्ञानिक 'एफ' और श्री हरिमंदर दत्ता, मौसम विज्ञानी 'ए' ने हिमाचल प्रदेश के कृषि निदेशक की अध्यक्षता में पीएमएफबीवाई और आर-डब्ल्यूबीसीआईएस के कार्यान्वयन के तौर-तरीकों पर सामान्य चर्चा के संबंध में बैठक में भाग लिया। 13 सितंबर, 2022 को कृषि निदेशालय, हिमाचल प्रदेश, शिमला में।

श्री पी. एस. कन्नन, वैज्ञानिक 'ई' ने सरकार के मुख्य सचिव की अध्यक्षता में "उत्तर-पूर्वी मानसून तैयारी बैठक" में भाग लिया। 13 सितंबर, 2022 को तमिलनाडु सचिवालय में।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 14 सितंबर, 2022 को "सेवाओं पर कार्य समूह की विशेषज्ञ टीम बैठक", डब्ल्यूएमओ, क्षेत्रीय संघ ॥ में भाग लिया।

डॉ. एस. बालाचंद्रन, वैज्ञानिक 'एफ' ने 15 सितंबर, 2022 को तिरुमाला तिरुपति देवस्थानम मंदिर परिसर के लिए आपदा प्रबंधन योजना के संबंध में एनडीएमए द्वारा आयोजित ऑनलाइन बैठक में भाग लिया।

श्री हरमीत सिंह साहनी, वैज्ञानिक 'ई' ने 15 सितंबर 2022 को राष्ट्रीय रोग नियंत्रण केंद्र में आयोजित "जलवायु परिवर्तन और मानव स्वास्थ्य" से संबंधित बैठक में भाग लिया।

डॉ. एस. द्विवेदी, वैज्ञानिक 'सी' ने 17 सितंबर, 2022 को ओएसडीएमए, भुवनेश्वर में RIMES, थाईलैंड द्वारा "ओडिशा के लिए एकीकृत आपदा जोखिम प्रबंधन के लिए परिचालन प्रणालियों के लिए उपयोगकर्ता स्वीकृति परीक्षण (SATARK) एप्लिकेशन" पर बैठक में भाग लिया।

डॉ. जयंत सरकार, वैज्ञानिक 'एफ' और श्री एस. जी. कांबले, वैज्ञानिक 'एफ' ने 'स्वच्छ सागर सुरक्षित सागर' कार्यक्रम में डॉ. एम. रविचंद्रन, सचिव, एमओईएस और श्री गोपाल अयंगर, वैज्ञानिक 'जी', एमओईएस के साथ भाग लिया। 17 सितंबर, 2022 को पृथ्वी विज्ञान मंत्रालय द्वारा आयोजित।

डॉ. डी. आर. पटनायक, वैज्ञानिक 'एफ' और **डॉ. कुलदीप श्रीवास्तव**, वैज्ञानिक 'ई' ने 19 सितंबर, 2022 को होटल इंपीरियल, जनपथ में बैरन वेदर इंक., यूएसए के साथ बैठक की।

डॉ. के. के. सिंह, वैज्ञानिक 'जी' और **डॉ. एस. डी. अत्री**, वैज्ञानिक 'जी' ने 22 सितंबर, 2022 को माननीय केंद्रीय कृषि मंत्री की अध्यक्षता में "कृषि उपग्रहों" पर बैठक में भाग लिया।

डॉ. एस. ओ. शॉ, वैज्ञानिक 'एफ' ने 23 सितंबर, 2022 को "एसटी रडार डेटा की डेटा प्रोसेसिंग और एनकेएन अपलोड के लिए सॉफ्टवेयर के विकास" परियोजना के संबंध में परियोजना समीक्षा और संचालन समूह की बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 29 सितंबर, 2022 को एनडीएमए द्वारा आयोजित वीसी के माध्यम से छठी संचालन समिति की बैठक या कॉमन अलर्टिंग प्रोटोकॉल (सीएपी) आधारित इंटीग्रेटेड अलर्ट सिस्टम में भाग लिया।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 4 अक्टूबर, 2022 को सीजीपीबी की समिति XII - 'सतत विकास के लिए भूविज्ञान' की 18^{वीं} बैठक में भाग लिया।

श्री पी. आर. नस्कर, वैज्ञानिक 'सी' और डॉ. अन्वेसा भट्टाचार्य वैज्ञानिक 'सी', एएमओ कोलकाता से ने 7 अक्टूबर, 2022 को एसएसईए सिगमेट समन्वय मंच बैठक में भाग लिया।

श्री बी. पी. यादव, वैज्ञानिक 'एफ', श्री राहुल सक्सैना, वैज्ञानिक 'एफ', श्री अशोक राजा एस.के., वैज्ञानिक 'सी' और सुश्री हेमलता भारवानी, वैज्ञानिक 'सी' ने 13 अक्टूबर, 2022 को गंगा-ब्रह्मपुत्र और मेघना बेसिन (जीबीएम) पर हाइड्रोलॉजिकल स्थिति और आउटलुक सिस्टम (हाइड्रोसोस) पर डब्ल्यूएमओ की बैठक में भाग लिया।

डॉ. एस. बंद्योपाध्याय, वैज्ञानिक 'एफ' ने 17 अक्टूबर, 2022 को मुख्य सचिव, पश्चिम बंगाल सरकार द्वारा बुलाई गई बंगाल की खाड़ी के ऊपर चक्रवाती परिसंचरण के लिए समन्वय बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी', ने सीओपी 27 17 अक्टूबर, 2022 में भारत की रणनीति पर चर्चा के लिए माननीय पर्यावरण, वन एवं जलवायु परिवर्तन मंत्रालय (एमओईएफ एंड सीसी) मंत्री की अध्यक्षता में आयोजित बैठक में भाग लिया।

डॉ. सत्यभान बी. रत्ना, वैज्ञानिक 'ई' ने 20 अक्टूबर, 2022 को आईआईटीएम, पुणे द्वारा आयोजित एमओईएस रिसर्च फेलोशिप प्रोग्राम (एमआरएफपी) की वार्षिक समीक्षा बैठक में भाग लिया।

श्री यू. दास, वैज्ञानिक 'सी' और डॉ. एस. द्विवेदी, वैज्ञानिक 'सी' ने बी.पी.आई. में एक बैठक में भाग लिया। निदेशक, बी.पी.आई. की अध्यक्षता में हवाई अड्डा परिसर। 21 अक्टूबर, 2022 को चक्रवात-सीतारंग से संबंधित हवाई अड्डा।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 27 अक्टूबर, 2022 को आयोजित "पोजिशनल एस्ट्रोनॉमी सेंटर", कोलकाता, आईएमडी की स्थायी सलाहकार समिति की बैठक में भाग लिया।

डॉ. एच. आर. बिस्वास, वैज्ञानिक 'एफ' ने 31 अक्टूबर, 2022 को भुवनेश्वर से जेपोर के लिए पहली उड़ान सेवाओं के लिए बीपीआई हवाई अड्डे, भुवनेश्वर में फ्लैग-ऑफ समारोह में भाग लिया है और इस उड़ान संचालन के लिए जेपोर में मौसम विज्ञान सेवाएं भी शुरू कर दी गई हैं।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 31 अक्टूबर, 2022 को बांग्लादेश के प्रतिनिधियों के लिए संयुक्त हाइड्रोमेट प्रशिक्षण कार्यक्रम के संबंध में विश्व बैंक के प्रतिनिधिमंडल और आईएमडी, पुणे के अधिकारियों के साथ बैठक में भाग लिया। उन्होंने "आईएमडी की कृषि मौसम सलाहकार सेवाओं" पर एक प्रस्तुति भी दी।

डॉ. एम. महापात्र, डीजीएम आईएमडी ने 2 नवंबर, 2022 को एनसीएमआरडब्ल्यूएफ, नोएडा में वैज्ञानिक सलाहकार समिति की बैठक के उद्घाटन समारोह के दौरान मुख्य अतिथि के रूप में भाग लिया।

एनसीएमआरडब्ल्यूएफ, नोएडा में वैज्ञानिक सलाहकार समिति की बैठक

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 3 नवंबर, 2022 को गठबंधन फॉर डिजास्टर रेजिलिएंट इंफ्रास्ट्रक्चर द्वारा आयोजित "राष्ट्रीय और उप-राष्ट्रीय आपदा जोखिम और लचीलापन आकलन और दूरसंचार क्षेत्र परियोजना के लिए रोडमैप" की शुरुआत बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. आर. के जेनामणि, वैज्ञानिक 'एफ' ने 3 नवंबर, 2022 को वर्चुअल मोड के माध्यम से "वेदर एंड क्लाइमेट साइंस फॉर सर्विस पार्टनरशिप इंडिया (डब्ल्यूसीएसएसपी-इंडिया)" कार्यकारी समिति की बैठक में भाग लिया।

डॉ. एस. बंद्योपाध्याय, वैज्ञानिक 'एफ' ने संयुक्त सचिव श्री मनोज अबुसारिया की उपस्थिति में हिंदी निरीक्षण बैठक की अध्यक्षता की। 3 नवंबर, 2022 को आरएमसी कोलकाता में निदेशक (एमओईएस)।

डॉ.कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 3 नवंबर, 2022 को सीडीआरआई सचिवालय, नई दिल्ली में आपदा प्रतिरोधी बुनियादी ढांचे के गठबंधन से दूरसंचार क्षेत्र के लिए डीआरआरएएफ के संबंध में बैठक में भाग लिया। बैठक का उद्देश्य दूरसंचार क्षेत्र की आपदा लचीलापन को बढ़ाना था।

डॉ. पुलक गुहाठाकुरता, वैज्ञानिक 'एफ' ने 31 अक्टूबर से 1 नवंबर, 2022 तक पहली आमने-सामने डब्लूएमओ आरए II सीपी-हाइड्रोलॉजी बैठक और 1 से 3 नवंबर, 2022 तक पहली आरए II ग्लोबल हाइड्रोलॉजिकल स्थिति और आउटलुक सिस्टम (हाइड्रोसोस) कार्यान्वयन कार्यशाला में भाग लिया है। वियनतियाने, लाओ पीडीआर में ऑनलाइन आयोजित किया गया।

डॉ. राजीब चट्टोपाध्याय, डॉ. दिव्या सुरेंद्रन और डॉ. अनन्या करमाकर ने 3 नवंबर, 2022 को एनडीसी, आईएमडी पुणे में बैठक में भाग लिया, जिसमें ओ/ओ सीआरएस द्वारा "एयर कंडीशनिंग सिस्टम के लिए पुणे शहर की मौसमी ऊर्जा दक्षता अनुपात" पर एक संयुक्त अध्ययन पर चर्चा की गई।, पुणे, यशदा और सीओईपी।

श्री बी. पी. यादव, वैज्ञानिक 'जी', श्री राहुल सक्सैना, वैज्ञानिक 'एफ', डॉ. ए. के. दास, वैज्ञानिक 'ई', श्री एस. के. माणिक, वैज्ञानिक 'सी', श्री अशोक राज एस.के., वैज्ञानिक 'सी', सुश्री हेमलता भरवानी, वैज्ञानिक 'सी' ने 4 नवंबर, 2022 को एचआरसी, यूएसए द्वारा भूस्खलन चेतावनी मॉड्यूल के साथ एसएएसआईएएफजीएस को बढाने के लिए आभासी बैठक में भाग लिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 9 नवंबर, 2022 को "2022-23 के लिए कृषि सेवाओं पर डब्ल्यूजी-सेवाओं की वार्षिक रिपोर्ट और 2023-24 के लिए नियोजित गतिविधियों के लिए इनपुट" पर चर्चा करने के लिए ऑनलाइन बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 11 नवंबर, 2022 को "मल्टी-मिशन मौसम विज्ञान डेटा प्राप्त करने और प्रसंस्करण प्रणाली (एमएमडीआरपीएस) के लिए एसएसी-आईएमडी टीम" के साथ शिष्टाचार बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 14 नवंबर, 2022 को मौसम विज्ञान केंद्र, रायपुर का निरीक्षण करने वाली संसदीय राजभाषा समिति की बैठक में भाग लिया।

श्री डी. संथिल पांडियन, संयुक्त सचिव (एमओईएस) ने आरएमसी, कोलकाता का दौरा किया। 16 नवंबर, 2022 को डॉ. एस. बंद्योपाध्याय, आरएमसी कोलकाता ने उन्हें आरएमसी कोलकाता की गतिविधियों के बारे में जानकारी दी।

डॉ. एच. आर. बिस्वास, वैज्ञानिक 'एफ' ने 16 नवंबर, 2022 को RIMES, थाईलैंड के सहयोग से SATARK के कार्यान्वयन पर मुख्य सचिव, ओडिशा और ओडिशा राज्य आपदा प्रबंधन प्राधिकरण (OSDMA) टीम के साथ आभासी बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने मेजर जनरल (डॉ.) आर.के. मारवाहा, पूर्व अतिरिक्त के साथ बैठक में भाग लिया। 18 नवंबर, 2022 को स्वास्थ्य पर जलवायु परिवर्तन के प्रभाव पर परियोजना के संबंध में निदेशक, आईएनएमएएस, डीआरडीओ और वर्तमान में अंतर्राष्ट्रीय जीवन विज्ञान संस्थान-भारत (आईएलएसआई-भारत) के वैज्ञानिक सलाहकार।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई', डॉ. सत्यभान बिशोय रत्न, वैज्ञानिक 'ई', डॉ. सबीअली सी. टी., वैज्ञानिक 'सी', श्री प्रसाद भोर, मौसम विज्ञानी 'ए' ने एसएएससीओएफ-24 के लिए 24 नवंबर को ऑनलाइन बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी', आईएमडी ने 26 दिसंबर को एमओईएस और डीएसटी की संयुक्त हिंदी सलाहकार समिति की 32^{वीं} बैठक में भाग लिया।

डॉ. एम. महापात्र, डीजीएम आईएमडी ने 30 दिसंबर, 2022 को इप्स्ट्रा प्रोग्राम इंटरफेज़ समिति की दूसरी बैठक में भाग लिया।

अंतर-एजेंसी बैठक

श्री बी. पी. यादव, वैज्ञानिक 'एफ' और डॉ. अशोक कुमार दास, वैज्ञानिक 'ई' ने जल शक्ति मंत्रालय के जल संसाधन, नदी विकास और गंगा संरक्षण विभाग के सचिव की अध्यक्षता में "राष्ट्रीय जल विकास एजेंसी (एनडब्ल्यूडीए) के शासी निकाय" की उनसठवीं (69^{वीं}) बैठक में भाग लिया, जो आयोजित 19 जनवरी 2022 को हुई थी।.

श्री बी. पी. यादव, वैज्ञानिक 'एफ' ने 5 जुलाई, 2022 को जल शक्ति मंत्रालय, जल संसाधन विभाग द्वारा आयोजित "राष्ट्रीय जल विज्ञान परियोजना" के कार्यान्वयन के लिए राष्ट्रीय स्तर की संचालन समिति की चौथी बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 9 दिसंबर, 2022 को स्विस मेटियो द्वारा "क्लाउडबर्स्ट और विषयगत स्विस अनुभव और तकनीकी" प्रस्तुति पर बातचीत के संबंध में सुश्री कोरिन डेमेंज, हेड स्विस कॉरपोरेशन ऑफिस इंडिया और काउंसलर, स्विट्जरलैंड द्तावास के साथ बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 12 दिसंबर, 2022 को "उष्णकिदंधीय चक्रवात और आगे का रास्ता" पर चल रहे एमओईएस-एनओएए अंतर्राष्ट्रीय समझौते पर चर्चा करने के लिए सचिव, एमओईएस की अध्यक्षता में एक दिवसीय बैठक और विचार-मंथन सत्र के उद्घाटन सत्र में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 12 दिसंबर, 2022 को वीसी के माध्यम से शीत लहर के मौसम 2022-23 के लिए तैयारियों और शमन उपायों की समीक्षा करने के लिए संबंधित मंत्रालयों और शीत लहर की आशंका वाले राज्यों के साथ एनडीएमए के सदस्य सचिव की अध्यक्षता में बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. शंकर नाथ, वैज्ञानिक 'एफ' ने 14 दिसंबर, 2022 को आरएआईआई के डब्ल्यूएमओ सदस्यों द्वारा कॉमन अलर्टिंग प्रोटोकॉल के कार्यान्वयन के लिए बैठक में भाग लिया।

डॉ. एस. बंद्योपाध्याय, वैज्ञानिक 'एफ' ने 14 दिसंबर, 2022 को मैथन बांध, धनबाद, झारखंड में दामोदर घाटी निगम की "मैथन और पंचेत बांध के लिए आपातकालीन कार्य योजना के कार्यान्वयन" पर परामर्श बैठक में भाग लिया।

श्री यू. दास, वैज्ञानिक. 'सी' ने 23 दिसंबर, 2022 को कृषि और खाद्य उत्पादन निदेशक, ओडिशा की अध्यक्षता में कृषि भवन, भुवनेश्वर में जलवायु लचीला प्रथाओं का उपयोग करके ओडिशा में छोटे धारक किसानों के लिए पायलट परियोजना की प्रगति और खाद्य सुरक्षा में सुधार पर दूसरी बैठक में भाग लिया।

श्री हरमीत सिंह साहनी, वैज्ञानिक 'ई' ने 26 दिसंबर, 2022 को सेवा भवन, नई दिल्ली में अध्यक्ष, केंद्रीय विद्युत प्राधिकरण की अध्यक्षता में आरई जनरेटर/आरई समृद्ध राज्यों से संबंधित नए सीईआरसी डीएसएम विनियमों के विभिन्न पहलुओं पर चर्चा करने के लिए एक बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 29 दिसंबर, 2022 को देश भर में भारतीय सर्वक्षण विभाग द्वारा स्थापित सतत संचालन संदर्भ स्टेशन (सीओआरएस) बुनियादी ढांचे पर मौसम संबंधी पूर्वानुमानों के लिए मेट सेंसर की स्थापना के संबंध में पंचायती राज मंत्रालय के सचिव की अध्यक्षता में बैठक में भाग लिया।

अतिरिक्त मुख्य सचिव, सरकार की अध्यक्षता में हुई बैठक में **डॉ. एच. आर. विश्वास**, एम. सी. भ्वनेश्वर ने भाग लिया। ओडिशा सरकार 21 अक्टूबर, 2022 को बंगाल की खाड़ी में आने वाले चक्रवात के लिए तैयारियों की स्थिति की समीक्षा करेगी।

डॉ. एस. द्विवेदी, वैज्ञानिक 'सी' ने 28 अक्टूबर, 2022 को वर्चुअल मोड पर मुख्य सचिव, ओडिशा की अध्यक्षता में फसल बीमा (एसएलसीसीआई) पर 58^{वी} राज्य स्तरीय समन्वय समिति की बैठक में भाग लिया।

डॉ. के. के. सिंह ने ACROSS-IMD के तहत परियोजनाओं की प्रगति की निगरानी के लिए 1 नवंबर, 2022 को IMD की "परियोजना निगरानी और सलाहकार समिति (PMAC)" की 11^{वीं} बैठक की अध्यक्षता की।

श्री बी. पी. यादव, वैज्ञानिक 'जी' ने 15 नवंबर, 2022 को राष्ट्रीय जल विकास एजेंसी के शासी निकाय की 17^{वीं} बैठक में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने सचिव, जल संसाधन, नदी विकास और गंगा कायाकल्प विभाग, जल शक्ति मंत्रालय, नई दिल्ली की अध्यक्षता में राष्ट्रीय जल विकास एजेंसी (एनडब्ल्यूडीए) के शासी निकाय की **70**^{वीं} बैठक **15** नवंबर, **2022** को मोड में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 21 नवंबर, 2022 को मौसम विज्ञान उपग्रहों (सीजीएमएस): भविष्य की दिशा 2022 के लिए समन्वय समूह की पहली उच्च स्तरीय बैठक में भाग लिया।

डॉ. एच. आर. बिस्वास, वैज्ञानिक 'एफ' ने 10 अक्टूबर, 2022 और 21 नवंबर, 2022 को कृषि उत्पादन आयुक्त की अध्यक्षता में माइक्रो सॉफ्ट टीम के लिंक के माध्यम से वीडियो कॉन्फ्रेंसिंग के माध्यम से खरीफ फसल की फसल मौसम निगरानी समूह समिति (सीडब्ल्यूडब्ल्यूजीसीएम) में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने श्री गौरव गुप्ता, आईएएस, अतिरिक्त के साथ बैठक में भाग लिया। मुख्य सचिव, बुनियादी ढांचा, विकास, बंदरगाह और अंतर्देशीय जल परिवहन विभाग, सरकार। कर्नाटक के और **डॉ. एम. आर. रवि**, आईएएस, प्रबंध निदेशक, केएसआईआईडीसी और ब्रिगेडियर। (सेवानिवृत्त) **डी. एम**. पूर्वीमथ, तकनीकी सलाहकार, केएसआईआईडीसी 24 नवंबर, 2022 को शिवमोग्गा हवाई अड्डे के संचालन के संबंध में।

डॉ. एच. आर. बिस्वास, वैज्ञानिक 'एफ' ने राज्य में शीत लहर की तैयारी की समीक्षा के लिए 25 नवंबर, 2022 को ओडिशा के माननीय मुख्यमंत्री की अध्यक्षता में बैठक में भाग लिया।

डॉ. एस. द्विवेदी, वैज्ञानिक 'सी' ने 29 नवंबर, 2022 को कृषि भवन, ओडिशा में खाद्य उत्पादन, ओडिशा के कृषि निदेशक की अध्यक्षता में फसल आकस्मिकता योजना 2023-24 पर एक बैठक में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 30 नवंबर, 2022 को आईसीएमआर, नई दिल्ली में आयोजित "वैश्विक जलवायु परिवर्तन और स्वास्थ्य" पर बैठक में भाग लिया।

डॉ. के. साथी देवी, वैज्ञानिक 'जी' ने 7 दिसंबर, 2022 को क्वाड एचएडीआर टीटीएक्स के संबंध में विदेश मंत्रालय द्वारा आयोजित आंतरिक हितधारकों की बैठक में भाग लिया।

डॉ. एम. महापात्र, डीजीएम आईएमडी ने 30 दिसंबर को दूरदर्शन पर प्रसारित होने वाले एनडीएमए द्वारा शीत लहर पर आयोजित विशेष कार्यक्रम 'आपदा का सामना' की रिकॉर्डिंग में भाग लिया।

6.4. प्रशिक्षण

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 14 मार्च, 2022 को "चक्रवात निगरानी और पूर्वानुमान के लिए उपग्रह अनुप्रयोग" पर अल्पकालिक पुनश्चर्या पाठ्यक्रम में उद्घाटन भाषण दिया।

श्री एस. के. माणिक, वैज्ञानिक 'सी' ने 21 मार्च से 29 अप्रैल, 2022 तक "हाइड्रोलॉजी में डेटा एक्सचेंज के इंटरऑपरेबल" पर डब्ल्यूएमओ से प्रशिक्षण में भाग लिया।

श्री अशोक राजा एस.के., वैज्ञानिक 'सी' ने 25 अप्रैल से 6 मई, 2022 के दौरान संयुक्त राष्ट्र से संबद्ध सीएसएसटीईएपी द्वारा आयोजित "ओपन सोर्स जीआईएस और जियोवेब सर्विसेज" पर शॉर्ट टर्म कोर्स में भाग लिया।

"ओपन सोर्स जीआईएस और जियोवेब सर्विसेज" पर लघु अवधि पाठ्यक्रम

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 30 मई, 2022 को एमडब्ल्यूओ, पालम में "एविएशन फोरकास्टिंग रिफ्रेशर कोर्स" का उद्घाटन किया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 30 मई, 2022 को हाइब्रिड मोड के माध्यम से "समीर की 19^{वी} अनुसंधान सलाहकार समिति (आरएसी)" में भाग लिया।

18^{वां} उष्णकटिबंधीय चक्रवात पूर्वानुमानकर्ता प्रशिक्षण 2022

18^{वां} उष्णकिट बंधीय चक्रवात पूर्वानुमानकर्ता प्रशिक्षण 2022 क्षेत्रीय विशिष्ट मौसम विज्ञान केंद्र (आरएसएमसी), नई दिल्ली द्वारा 4-14 अप्रैल के दौरान ऑनलाइन मोड के माध्यम से आयोजित किया गया था। इसमें डब्लूएमओ/ईएससीएपी पैनल के सदस्य देशों से 15 और एसीडब्ल्यूसी, सीडब्ल्यूसी और तटीय एमसी और एमओ, राष्ट्रीय मौसम पूर्वानुमान केंद्र और आरएसएमसी नई दिल्ली से 51 सहित 65 प्रतिभागी शामिल थे। डब्ल्यूएमओ ने प्रशिक्षण कार्यक्रम के सफल आयोजन के लिए आईएमडी की सराहना की।

आईएमडी ने 2 मई को अन्वेषण और उत्पादन ऑपरेटरों के लिए परिचय प्रशिक्षण (ऑनलाइन मोड) का आयोजन किया, जिसमें हाइड्रोकार्बन महानिदेशालय, भारतीय तट रक्षक, स्वास्थ्य, सुरक्षा और पर्यावरण कार्यालय, तेल उद्योग सुरक्षा निदेशालय, भारतीय नौसेना और तेल और अन्य ऑपरेटरों के लगभग 150 प्रतिभागियों के साथ

शामिल हुए। प्राकृतिक गैस निगम, शेल, सन पेट्रो, इनवेनियर, रिलायंस, अदानी आदि। प्रशिक्षण के दौरान चक्रवातों की मूल बातें, समुद्री समुदाय के लिए आईएमडी द्वारा जारी विभिन्न बुलेटिन और सुरक्षित अपतटीय संचालन के लिए विकसित अनुकूलित उत्पादों के बारे में व्याख्यान की व्यवस्था की गई थी।

वेब ऑफ साइंस प्रशिक्षण

MoES ने डिजिटल अर्थ कंसोर्टियम के हिस्से के रूप में अपने संस्थानों के लिए वेब ऑफ साइंस की सदस्यता ली है। इस स्रोत का सर्वोत्तम उपयोग करने के लिए, तिमाही के दौरान 18 मई, 24 मई, 31 मई, 8 जून और 14 जून, 2022 को विभिन्न विषयों पर प्रशिक्षण के पांच सत्र आयोजित किए गए।

3 जून, 2022 को "भूस्खलन जोखिम आकलन क्षमता के साथ उन्नत SAsiaFFGS - पूर्वानुमानकर्ताओं का प्रशिक्षण" पर अंतर्राष्ट्रीय तकनीकी चर्चा आयोजित की गई।

श्री बी. पी. यादव, वैज्ञानिक 'एफ', श्री राहुल सक्सेना, वैज्ञानिक 'एफ', डॉ. ए. के. दास, वैज्ञानिक 'ई', श्री एस. के. माणिक, वैज्ञानिक 'सी', श्री अशोक राजा, वैज्ञानिक 'सी' और सुश्री हेमलता भरवानी, वैज्ञानिक 'सी' ने एनआरएससी, जीएसआई के प्रतिनिधियों के साथ 29 जून, 2022 को "भूस्खलन खतरा आकलन क्षमता - रुद्रप्रयाग (उत्तराखंड) और वायनाड (केरल), भारतीय क्षेत्र पर विशेष जोर देने के साथ पूर्वानुमानकर्ताओं का प्रशिक्षण" पर एक दिवसीय तकनीकी कार्यशाला में भाग लिया।

"भूस्खलन खतरा आकलन क्षमता" पर तकनीकी कार्यशाला

श्री राकेश कुमार, वैज्ञानिक 'सी', श्री ए. सी. रॉय, मौसम विज्ञानी 'ए', श्री आर सैकिया, मौसम विज्ञानी 'ए', श्री ए. जे. भुइयां, मौसम विज्ञानी 'ए', श्री एस. मोहदिकर, एस. ए., श्री एम. कुमार, एस. ए., श्री के. पाटगिरी, आर. एम., श्री पी. दत्ता, यांत्रिकी सहायक AWS/ARG के अन्य सेंसरों के साथ-साथ उपग्रह ट्रांसमीटर के प्रशिक्षण के लिए 1 जनवरी, 2019 से IngenTechonology, कानप्र के लिए प्रस्थान किया गया। 22 जुलाई, 2022.

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई', श्री सनी चुग, वैज्ञानिक 'सी' और श्रीमती कोमल श्रीवास्तव, एस.ए. ने 15 सितंबर, 2022 को पृथ्वी विज्ञान मंत्रालय (एमओईएस) में "साइबर स्वच्छता" पर एक इंटरैक्टिव सत्र-सह-प्रशिक्षण कार्यक्रम में भाग लिया, तािक अधिकारियों को डिजिटल और साइबर जोखिमों, तेजी से बढ़ते साइबर जोखिमों के बारे में जागरूक किया जा सके। अपराध और एमएचए द्वारा आयोजित निवारक उपाय।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने कई राष्ट्रीय और अंतरराष्ट्रीय बीमा कंपनियों के अधिकारियों के परिचय कार्यक्रम में भाग लिया और उनके साथ बैठक कर "बीमा क्षेत्र के लिए उपयोगी मौसम/जलवायु डेटा की आवश्यकता और बीमा कंपनियों के पास नुकसान और क्षिति के बारे में डेटा उपलब्धता" पर चर्चा की। 10 नवंबर, 2022 को प्रमुख, सीआर एंड एस, आईएमडी, पुणे की अध्यक्षता।

सशस्त्र सीमा बल (एसएसबी) के 24 अधिकारियों ने शनिवार को दौरा किया। मिले। एएलटीटीसी द्वारा आयोजित "उन्नत उपग्रह संचार" पर दो सप्ताह के पाठ्यक्रम के एक भाग के रूप में 19 अक्टूबर, 2022 को प्रभाग। इन अधिकारियों ने श्री एस. सी. भान, वैज्ञानिक द्वारा दिए गए "मौसम विज्ञान उपग्रह और उनके अनुप्रयोग" शीर्षक वार्ता में भाग लिया। 'एफ' और उन्हें एमएमडीआरपीएस प्रणाली का दौरा कराया गया।

श्री यू. दास, वैज्ञानिक 'सी' और डॉ. एस. द्विवेदी, वैज्ञानिक 'सी', एम. सी. भुवनेश्वर ने 28 अक्टूबर, 2022 और 29 अक्टूबर, 2022 को साइक्लोन वेब आधारित डायनेमिक कम्पोजिट रिस्क एटलस और डिसीजन सपोर्ट सिस्टम (वेब-डीसीआरए और डीएसएस) एप्लिकेशन प्रशिक्षण में ऑनलाइन भाग लिया।

श्री एस. सी. भान, वैज्ञानिक 'जी', श्री शिबिन बालाकृष्णन, वैज्ञानिक 'सी', डॉ. (सुश्री) नीति सिंह, वैज्ञानिक 'सी', श्री अतुल कुमार वर्मा, मौसम विज्ञानी 'ए', श्री विमल श्रीवास्तव, एस.ए. और श्री योगेश कुमार झा, एस.ए. ने आईएमडी को सौंपे जाने वाले एमएमडीआरपीएस सिस्टम पर प्रशिक्षण के लिए 1 नवंबर, 2022 से 3 नवंबर, 2022 तक अंतरिक्ष अनुप्रयोग केंद्र (एसएसी), अहमदाबाद का दौरा किया।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई' ने 10 नवंबर 2022 को ऑनलाइन मेडिटेरेनियन क्लाइमेट आउटलुक फोरम (एमईडीसीओएफ) के प्रशिक्षण सत्र में भाग लिया और "एसएएससीओएफ ऑब्जेक्टिव फोरकास्ट का अनुभव" पर प्रस्तुति दी।

श्री कुणाल कौशिक, मौसम विज्ञानी 'ए' और श्री प्रीतम चक्रवर्ती, एस.ए. एमसी गंगटोक ने 14 से 17 नवंबर, 2022 के दौरान पर्यावरण उपकरणों पर ऑनलाइन प्रशिक्षण कार्यशाला कार्यक्रम में भाग लिया है।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' और डॉ. शंकर नाथ, वैज्ञानिक 'ई' ने 14 नवंबर से 18 नवंबर, 2022 के दौरान ऑनलाइन मोड के माध्यम से सेंटर फॉर डेवलपमेंट ऑफ एडवांस्ड कंप्यूटिंग, मोहाली द्वारा बिग डेटा प्रबंधन और व्यापक विश्लेषण पर आयोजित 1-सप्ताह के प्रशिक्षण कार्यक्रम में भाग लिया।

श्रीमती दिव्या कुमारी, एस.ए., आईएसएसडी, मुख्यालय नई दिल्ली ने आरएमसी गुवाहाटी और इसके क्षेत्र के अंतर्गत आने वाले अन्य कार्यालयों के अधिकारियों को आरएमसी गुवाहाटी में भौतिक मोड में दो दिवसीय (24-11-2022 और 25-11-2022 को) ई-ऑफिस प्रशिक्षण दिया।

श्री अशोक राज एस.के., वैज्ञानिक 'सी', सुश्री हेमलता भारवानी, वैज्ञानिक 'सी' ने 8 दिसंबर, 2022 को 2000 बजे डब्लूएमओ द्वारा आयोजित "डब्ल्यूएमओ एफएफजीएस ट्रेनिंग प्लान वर्चुअल मीट" में भाग लिया। आउटरीच और क्षमता निर्माण गतिविधियों को बढ़ाने के लिए दुनिया भर के विभिन्न क्षेत्रीय केंद्रों से लगभग 30 प्रशिक्षित जल मौसम विज्ञानियों ने इस बैठक में भाग लिया।

श्री बिक्रम सिंह, वैज्ञानिक 'एफ' सरकार के भूतल क्षेत्र वेधशालाओं के प्रशिक्षु प्रतिभागियों को संबोधित करते हुए। 14 दिसंबर, 2022 को उत्तराखंड के एम.सी. देहरादुन में।

श्री एस. के. माणिक, वैज्ञानिक 'सी' और श्री अशोक राजा एस.के., वैज्ञानिक 'सी' ने 19-23 दिसंबर, 2022 के दौरान एनडब्ल्यूपी डिवीजन, आईएमडी द्वारा आयोजित "मौसम पूर्वानुमान सेवाओं में एनडब्ल्यूपी उत्पादों की व्याख्या और अनुप्रयोग" पर एक पुनश्चर्या पाठ्यक्रम में भाग लिया।

सुश्री कोमल श्रीवास्तव, एस.ए. ने मेट टेलीकम्युनिकेशन पर ऑनलाइन शॉर्ट टर्म रिफ्रेशर कोर्स सफलतापूर्वक पूरा किया, जो 19 दिसंबर से 23 दिसंबर, 2022 तक आयोजित किया गया था।

श्री प्रमोद कुमार, वैज्ञानिक 'सी' और मेटनेट टीम ने आईएमडी सीईएएसएस उपयोगकर्ताओं और निगरानी अधिकारियों को ऑनलाइन अवकाश ए के संबंध में प्रशिक्षण दिया। 8 मुख्य कार्यालयों (डीजीएम नई दिल्ली, सीआरएस पुणे, आरएमसी चेन्नई, आरएमसी गुवाहाटी, आरएमसी कोलकाता, आरएमसी मुंबई, आरएमसी) के लिए कार्यालयवार एक प्रशिक्षण कार्यक्रम आयोजित किया गया था। प्रबंधन, पदोन्नति, स्थानांतरण, उपकार्यालय/अनुभाग अद्यतन और सेवा पुस्तिका से संबंधित अन्य अपडेट और स्थापना अनुभाग द्वारा आवश्यक विभिन्न रिपोर्ट डाउनलोड करने के लिए 21 नवंबर से 30 नवंबर, 2022 तक वेबेक्स मीटिंग के माध्यम से नागप्र और आरएमसी नई दिल्ली)।

पृथ्वी विज्ञान एवं हिमालय अध्ययन केंद्र, विज्ञान एवं प्रौद्योगिकी विभाग, भारत सरकार से 5 अधिकारी/वैज्ञानिक। अरुणाचल प्रदेश के अधिकारी ने 6-7/12/2022 से एआरजी/एडब्ल्यूएस उपकरणों की स्थापना/परिचय के लिए प्रशिक्षण के लिए आरएमसी ग्वाहाटी का दौरा किया।

वेबिनार

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई' ने 15-17 मार्च, 2022 के दौरान टीईओजी और एनआरएससी की भ्वन

वेब सर्विसेज द्वारा आयोजित 3 दिवसीय वेबिनार-आधारित "भुवन अवलोकन" प्रशिक्षण पाठ्यक्रम में भाग लिया।

राजा आचार्य, मौसम विज्ञानी 'ए' ने 30 मार्च, 2022 को डिस्ट्रीब्यूटेड एकॉस्टिक सिस्टम्स रिसर्च कोऑर्डिनेशन नेटवर्क (डीएएस आरसीएन) मरीन जियोफिजिक्स वर्किंग ग्रुप और आईआरआईएस (सीस्मोलॉजी के लिए निगमित अनुसंधान संस्थान) द्वारा आयोजित वेबिनार "सीफ्लोर फाइबर ऑप्टिक संसिंग" में भाग लिया।

डॉ. कुलदीप श्रीवास्तव, वैज्ञानिक 'ई', श्री प्रमोद कुमार, वैज्ञानिक 'सी' और सुश्री कोमल श्रीवास्तव, एस.ए. ने 25 अप्रैल, 2022 को भारतीय मानक ब्यूरो द्वारा आयोजित वेबिनार - "मेटावर्स- इंटरनेट का भविष्य" में भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 19-20 सितंबर, 2022 के दौरान डब्ल्यूएमओ, आईटीयू, आईएफआरसी और ओएसिस द्वारा आयोजित "डब्ल्यूएमओ कैप कार्यान्वयन" कार्यशाला पर वेबिनार में भाग लिया।

श्री राजा आचार्य, मिले। 'ए', 29 नवंबर, 2022 को जीओओएस कार्यालय, अंतर सरकारी महासागरीय आयोग (यूएन) द्वारा आयोजित वेबिनार "महासागर अवलोकन के लिए स्वायत वाहनों और उच्च प्रौद्योगिकी का उपयोग" में भाग लिया।

डॉ. सत्यभान बी रत्न, वैज्ञानिक 'ई' ने 18 अक्टूबर, 2022 को EURAXESS इंडिया द्वारा आयोजित "MSCA स्टाफ एक्सचेंज कॉल 2022 - यूरोप के साथ सहयोग कैसे करें" विषय पर वेबिनार में भाग लिया।

डॉ. सत्यभान बी. रत्ना, वैज्ञानिक 'ई' ने 11 नवंबर, 2022 को WMO द्वारा आयोजित "द क्लाइमेट क्लासरूम @ COP27: क्लाइमेट चेंज कम्युनिकेशन" पर एक वेबिनार में भाग लिया।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 29 नवंबर, 2022 को जीओओएस कार्यालय, अंतर सरकारी महासागरीय आयोग (यूएन) द्वारा आयोजित वेबिनार "महासागर अवलोकन के लिए स्वायत वाहनों और उच्च प्रौद्योगिकी का उपयोग" में भाग लिया।

PRESENTATION

श्री बी. पी. यादव, वैज्ञानिक 'एफ' और डीडीजीएम (एच) ने एमएचए द्वारा आयोजित "बाढ़ तैयारियों" की समीक्षा के लिए बैठक में एक प्रस्तुति दी। सरकार. 27 मई, 2022 को एनडीसीसी भवन में भारत का।

डॉ. एस. बंद्योपाध्याय, वैज्ञानिक 'एफ' ने एक विशेषज्ञ के रूप में भाग लिया और 21 जुलाई, 2022 को राष्ट्रीय आपदा प्रबंधन संस्थान (एनआईडीएम), एमएचए, सरकार द्वारा आयोजित "बाढ़ और चक्रवातों के विशेष संदर्भ में इमारतों के लचीलेपन के उपाय" पर एक ऑनलाइन प्रशिक्षण कार्यक्रम के दौरान एक प्रस्तुति दी। भारत के, भूगोल विभाग, बर्दवान विश्वविद्यालय के सहयोग से।

श्री अरुलालन टी., वैज्ञानिक 'सी' ने कार्यशाला में भाग लिया और बोल्डर, कोलोराडो, यूएसए में आयोजित सबसीजनल टू सीजनल साइंस एंड एप्लिकेशन वर्कशॉप - 2022 में "एनसीयूएम-ईआरपी का उपयोग करके पश्चिमी विक्षोभ ट्रैक की भविष्यवाणी: एक महीना आगे" शीर्षक से एक पोस्टर प्रस्तुत किया।

सुश्री शिखा वर्मा, एस.ए. ने कुआलालंपुर, मलेशिया में 27-28 अक्टूबर, 2022 के दौरान इंजीनियरिंग और उभरती प्रौद्योगिकियों पर 8^{वं} अंतर्राष्ट्रीय सम्मेलन - आईसीईईटी 2022 में "एनडीबीआई से निकाले गए शहरी क्षेत्र का विश्लेषण और उपग्रह डेटा का उपयोग करके वर्गीकरण दृष्टिकोण" शीर्षक से पेपर प्रस्तुत किया।

डॉ. अय्यप्पन एम., वैज्ञानिक 'डी' ने भारी वर्षा की आशंका के आकलन पर पेपर प्रस्तुत किया और 2 नवंबर, 2022 को भूगोल विभाग, जामिया मिलिया इस्लामिया द्वारा आयोजित "भारत में भूस्खलन जोखिम आकलन और शमन" पर सह-अध्यक्ष राष्ट्रीय सम्मेलन में भाग लिया।

डॉ. (श्रीमती) मनोरमा मोहंती, वैज्ञानिक 'ई', एम. सी. अहमदाबाद ने भाग लिया और 18 नवंबर, 2022 को टेंट सिटी -2, एकता नगर (केवडिया), गुजरात में निर्धारित 20^{वं} राष्ट्रीय समुद्री खोज और बचाव (एनएमएसएआर) में प्रारंभिक चेतावनी प्रणाली पर पावर प्वाइंट प्रेजेंटेशन दिया।

डॉ. सबीअली सी.टी., वैज्ञानिक 'सी' ने 24 नवंबर, 2022 को ऑनलाइन आयोजित 24-एसएएससीओएफ बैठक के दौरान "देश पूर्वानुमान" प्रस्तुति दी।

श्री शुभेन्दु कर्माकर, मौसम विज्ञानी 'ए' ने 29 नवंबर से 2 दिसंबर, 2022 तक आयोजित TROPMET-2022 सम्मेलन में 1 दिसंबर, 2022 को "ग्लेशियर मास बजट और अलकनंदा बेसिन, उत्तराखंड में 2000-2020 के दौरान जलवायु का संबद्ध प्रभाव" शीर्षक से एक पेपर प्रस्तुत किया और एक पोस्टर प्रस्तुत किया। आईआईएसईआर, भोपाल में।

सुश्री लक्ष्मी पाठक, एस.ए. ने 30 नवंबर, 2022 को 29 नवंबर से 2 दिसंबर, 2022 तक आयोजित TROPMET-2022 सम्मेलन में "भारतीय जीएनएसएस आईपीडब्ल्यूवी और इनसैट 3डी और उडीआर डेटा का उपयोग करके थंडरस्टॉर्म घटनाओं की नाउकास्टिंग" शीर्षक से एक पेपर प्रस्तुत किया और एक पोस्टर प्रस्तुत किया। आईआईएसईआर, भोपाल।

डॉ. सत्यभान बी रत्न, वैज्ञानिक 'ई' ने "गुजरात (पश्चिमी तट भारत) पर भारतीय ग्रीष्मकालीन मानसून परिवर्तनशीलता का अध्ययन और एसोसिएटेड लार्ज स्केल डायनेमिक्स" पर एक व्याख्यान प्रस्तुत किया और सुश्री तनु शर्मा, जेआरएफ ने "भारतीय ग्रीष्मकालीन मानसून के बीच बदलते संबंधों की पुनः जांच" पर एक व्याख्यान प्रस्तुत किया। और हाल के दशकों में ENSO" 29 नवंबर से 2 दिसंबर, 2022 तक IISER, भोपाल में TROPMET-2022 में।

डॉ. अनन्या कर्माकर, वैज्ञानिक 'सी' ने "ऐतिहासिक रिकॉर्ड में भारत के उपखंडों के जलवाय क्षेत्रों का **मॉड्यूलेशन**" विषय पर मौखिक प्रस्त्ति दी थी, श्री नीलेश वाघ, परियोजना वैज्ञानिक 'सी' ने "दक्षिण पश्चिम हिंद महासागर में सूखे का विश्लेषण" विषय पर मौखिक प्रस्त्ति दी थी एसपीआई और एसपीईआई का उपयोग करने वाले देश और वैश्विक एसएसटी के साथ उनका संबंध" और लक्ष्मी एस., रिसर्च फेलो (एमआरएफपी) ने परिवर्तनशीलता "ग्रीष्मकालीन तापमान इंट्रासीज़नल मोड और दीर्घकालिक रुझान" विषय पर एक लाइटनिंग टॉक (एक छोटी बातचीत + पोस्टर प्रस्त्ति) प्रस्त्त की। 29 नवंबर से 2 दिसंबर, 2022 तक IISER भोपाल में आयोजित TROPMET-2022 में भारत में हीटवेव्स।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई' ने 3 दिसंबर, 2022 को दक्षिण एशिया मौसम विज्ञान संघ (एसएएमए) और कृषि मौसम विज्ञान पर दक्षिण एशिया फोरम (एसएएफओएएम) द्वारा आयोजित एसएएमए और एसएएफओएएम कार्यशाला "मानसून 2022: कृषि पर मानसून परिवर्तनशीलता का प्रभाव" में भाग लिया और प्रस्तुति दी।

श्री के. सी. साई कृष्णन, वैज्ञानिक 'जी' ने भारत और इस क्षेत्र के विभिन्न सदस्य देशों में विभिन्न कार्य बिंदुओं और भविष्य की योजना सेवाओं पर भारत के विकास और प्रगति को प्रस्तुत करने के लिए 24 अक्टूबर, 2022 से 28 अक्टूबर, 2022 तक स्विट्जरलैंड में INFCOM-2 में भाग लिया।

श्री मो. इमरान अंसारी, वैज्ञानिक 'ई' और श्री रोहित शुक्ला, वैज्ञानिक 'सी', आईएमडी, नई दिल्ली मूल उपकरण निर्माता (ओईएम) की फैक्ट्री साइट पर "फैक्टरी स्वीकृति परीक्षण (एफएटी)" आयोजित करने के लिए WEATEHEX कंपनी लिमिटेड 1-4 10, 25, ओबोंगसैंडन 3-आरओ यूआईवांग में आयोजित किया जाएगा। -सी, ग्योंगगी-डो, 16079, कोरिया गणराज्य में 24-26 नवंबर, 2022 तक।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. के. एस. होसालिकर, वैज्ञानिक 'जी', आईएमडी ने 28 से 29 नवंबर, 2022 तक अबू धाबी, संयुक्त अरब अमीरात में आरए ॥ प्रबंधन समूह के अठारहवें सत्र में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी 28-29 नवंबर के दौरान आरए II प्रबंधन समूह के अठारहवें सत्र में भाग लेने के लिए संयुक्त अरब अमीरात में पूर्व-भारत प्रतिनियुक्ति पर गए हैं।

6.5. व्याख्यान/वार्ता

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 6 जनवरी, 2022 को एनआईडीएम द्वारा आयोजित "एसटीआईपी के कार्यान्वयन के अवसरों पर तकनीकी सत्र" में विशिष्ट विशेषज्ञ के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने भारत सरकार के सभी मंत्रालयों/विभागों में आपदा प्रबंधन के नोडल अधिकारियों के लिए कार्यशाला में "भारत में आपदा प्रबंधन का अवलोकन" पर तकनीकी सत्र के दौरान भारत में प्रारंभिक चेतावनी प्रणालियों पर 12 जनवरी, 2022 को व्याख्यान दिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 8 फरवरी, 2022 को एलबीएसएनएए, मसूरी द्वारा "वैज्ञानिकों और प्रौद्योगिकीविदों के लिए सामुदायिक स्तर पर आपदा न्यूनीकरण में प्रौद्योगिकी की भूमिका" विषय पर प्रशिक्षण कार्यक्रम में "जलवायु परिवर्तन शमनः विज्ञान, प्रौद्योगिकी, अर्थशास्त्र और नीति की भूमिका" पर व्याख्यान दिया। 7-11 फरवरी, 2022 के दौरान।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 25 फरवरी, 2022 को 'विज्ञान सर्वत्र पूजयते' के अवसर पर 'मौसम और जलवायु सेवाओं में प्रगति' पर हिंदी में व्याख्यान दिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' बातचीत के दौरान

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 14 मार्च, 2022 को एनआईएएस बेंगलुरु में "विज्ञान, प्रौद्योगिकी और नवाचार कार्यक्रम (एसटीआईपी) के संदर्भ में मौसम पूर्वानुमान" पर एक व्याख्यान दिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने 6 अप्रैल, 2022 को केंद्र द्वारा संचालित "टिकाऊ उत्पादन के लिए जलवायु स्मार्ट कृषि" पर आईसीएआर प्रायोजित 21 दिवसीय शीतकालीन स्कूल में ऑनलाइन मोड के माध्यम से "कृषि के लिए जलवायु जोखिम मूल्यांकन और उसके प्रबंधन के लिए रणनीतियाँ" विषय पर व्याख्यान दिया। जलवायु परिवर्तन पर उन्नत अध्ययन (सीएएससीसी) के लिए, डॉ. राजेंद्र प्रसाद केंद्रीय कृषि विश्वविद्यालय, पूसा, बिहार, 28 मार्च से 17 अप्रैल, 2022 तक।

डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' ने संकाय सदस्यों और बी.एससी. को "कृषि समुदाय के लिए कृषि मौसम प्रभाग और जीकेएमएस सेवाओं की भूमिका" पर एक व्याख्यान दिया। 12 अप्रैल, 2022 को मुख्य परिसर, कृषि विज्ञान विश्वविद्यालय, धारवाइ, कर्नाटक और 22 अप्रैल, 2022 को कृषि महाविद्यालय, बीजापुर, कर्नाटक के कृषि छात्र सीआर एंड एस, पुणे की अपनी यात्रा के दौरान।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 6 अप्रैल, 2022 और 6 मई, 2022 को एनआरडीसी द्वारा "सबसे अधिक गर्मी के प्रति संवेदनशील लोगों के लिए जलवायु लचीलेपन का निर्माण: तैयारी और प्रतिक्रिया को मजबूत करना" विषय पर आयोजित वेबिनार में एक विशिष्ट वक्ता के रूप में व्याख्यान दिया।

श्री बी. पी. यादव, वैज्ञानिक 'एफ' ने 1 जून, 2022 को बिहार राज्य आपदा प्रबंधन प्राधिकरण, बिहार, सरकार द्वारा "बाढ़ प्रबंधन में विज्ञान और प्रौद्योगिकी के अनुप्रयोग" विषय पर आयोजित राष्ट्रीय कार्यशाला में "जल-मौसम संबंधी आपदाओं के लिए आईएमडी की वास्तविक समय प्रारंभिक चेतावनी और पूर्वानुमान" पर एक व्याख्यान दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 6 जून, 2022 को सीएसआईआर-एनआईएससी पीआर, नई दिल्ली में विश्व पर्यावरण दिवस के अवसर पर "जलवायु परिवर्तन और चरम मौसम" पर एक आमंत्रित व्याख्यान दिया।

विश्व पर्यावरण दिवस के अवसर पर डॉ. एम. महापात्र, महानिदेशक, आईएमडी

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 10 जून, 2022 को केरल राज्य आपदा प्रबंधन प्राधिकरण द्वारा आयोजित **"मानस्न 2022-क्या उम्मीद करें**" पर एक ऑनलाइन आमंत्रित व्याख्यान दिया।

15 जून, 2022 को उत्तराखंड आपदा प्रबंधन प्राधिकरण और ऊर्जा, पर्यावरण और जल परिषद, वसंत कुंज, नई दिल्ली द्वारा आयोजित "हम उत्तराखंड को जलवायु के अनुकूल कैसे बना सकते हैं" विषय पर आईएमडी के महानिदेशक डॉ. एम. महापात्र ने भाग लिया और मुख्य भाषण दिया।

श्री बी. पी. यादव, वैज्ञानिक 'एफ' (प्रमुख हाइड्रोमेट), श्री राहुल सक्सेना, वैज्ञानिक 'एफ', डॉ. ए. के. दास, वैज्ञानिक 'ई' और श्री एस. के. माणिक, वैज्ञानिक 'सी' ने जल संसाधन, नदी विकास और गंगा संरक्षण विभाग द्वारा आयोजित "भारत में बांध सुरक्षा प्रशासन के लिए बांध सुरक्षा अधिनियम 2021" पर एक राष्ट्रीय कार्यशाला में भाग लिया। जल शक्ति मंत्रालय 16 जून, 2022 को नई दिल्ली में।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 1 जुलाई, 2022 को जियोलॉजिकल सोसायटी ऑफ इंडिया द्वारा आयोजित "जलवायु परिवर्तन और प्रबंधन रणनीतियाँ" पर आमंत्रित वार्ता (वीसी) दी।

डॉ. सत्यभान विशोयी रत्न, वैज्ञानिक 'ई' ने 15 जुलाई, 2022 को समुद्री विज्ञान संस्थान, राष्ट्रीय अनुसंधान परिषद (सीएनआर-आईएसएमएआर), इटली में "भारतीय ग्रीष्मकालीन मानसून परिवर्तनशीलता: टेलीकनेक्शन और भविष्यवाणी" पर एक ऑनलाइन आमंत्रित व्याख्यान दिया।

डॉ. दिव्या सुरेंद्रन, वैज्ञानिक 'सी' ने 20-21 जुलाई, 2022 को क्छ ऑनलाइन व्याख्यान दिए और राष्ट्रीय

जल विज्ञान और मौसम विज्ञान केंद्र (एनसीएचएम), भूटान के कर्मचारियों के लिए "क्लाइमपैक्ट टूल" विषय पर व्यावहारिक सत्र आयोजित किए, जो डब्ल्यूएमओ भूटान का हिस्सा है। RIMES, थाईलैंड और NCHM, भूटान द्वारा CST प्रशिक्षण कार्यक्रम संचालित किया गया।

डॉ. डी. आर. पटनायक, वैज्ञानिक 'एफ' ने 18-19 जुलाई, 2022 को इसरो, नई दिल्ली में "जलवायु और पर्यावरण अध्ययन के लिए अंतरिक्ष आधारित सूचना समर्थन: भविष्य की राह" पर राष्ट्रीय कार्यशाला और विचार-मंथन बैठक में एक भाषण दिया।

डॉ. डी. आर. पटनायक, वैज्ञानिक। कार्यशाला के दौरान 'एफ'

श्री नहुष कुलकर्णी, वैज्ञानिक 'सी' को 29 जुलाई, 2022 को केंद्रीय प्रशिक्षण संस्थान (सीटीएल) में "एमसी अगरतला की प्रारंभिक चेतावनी महत्व और मौसम संबंधी सेवाएं" पर व्याख्यान देने के लिए आमंत्रित किया गया था।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई' और डॉ. राजीब चट्टोपाध्याय, वैज्ञानिक 'ई' ने त्रिवंडम, केरल में पहली "केरल राज्य जलवायु परिवर्तन हितधारक परामर्श कार्यशाला" के दौरान क्रमशः "केरल राज्य के लिए जलवायु सेवाएं" और "जलवायु संकेतकों के आधार पर केरल में मलेरिया और डेंगू के प्रकोप का एक अध्ययन" पर 2 अगस्त 2022 को व्याख्यान दिया।

डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' ने 3 अगस्त, 2022 को स्कूल ऑफ नेवल ओशनोलॉजी एंड मीटियोरोलॉजी, कोच्चि, केरल के अधिकारियों को "कृषि मौसम विज्ञान प्रभाग के अधिदेश और गतिविधियां" पर एक व्याख्यान दिया।

डॉ. (श्रीमती) मनोरमा मोहंती, वैज्ञानिक 'ई' ने 3 अगस्त, 2022 को एल.डी. इंजीनियरिंग कॉलेज, अहमदाबाद द्वारा आयोजित अल्पावधि प्रशिक्षण कार्यक्रम-आपदा प्रबंधन और लचीलापन निर्माण में "चक्रवात, बाढ़ और मौसम के लिए पूर्वानुमान और चेतावनी प्रणाली" पर व्याख्यान दिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 5 अगस्त, 2022 को जामिया मिल्लिया इस्लामिया, नई दिल्ली द्वारा आपदा जोखिम न्यूनीकरण पर संकाय विकास प्रशिक्षण कार्यक्रम के समापन समारोह के दौरान 'जी' ने प्रतिभागियों को मुख्य अतिथि के रूप में संबोधित किया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 10 अगस्त, 2022 को आजादी का अमृत महोत्सव के तहत राष्ट्रीय विज्ञान केंद्र द्वारा आयोजित कार्यक्रम के दौरान "मौसम पूर्वानुमान और भारतीय जलवायु परिवर्तन" पर एक आमंत्रित व्याख्यान दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 12 अगस्त, 2022 को "एकीकृत नीति निर्माण को सक्षम करने के लिए सिस्टम विश्लेषण" पर अंतर्राष्ट्रीय सम्मेलन के दौरान "दक्षिण एशिया में बहु-खतरा प्रारंभिक चेतावनी प्रणाली के लिए साझेदारी और सहयोग" पर अध्यक्षता की और मुख्य भाषण दिया। स्कोप कन्वेंशन सेंटर, लोदी रोड, नई दिल्ली 10-12 अगस्त, 2022 के दौरान।

श्री बी. पी. यादव, वैज्ञानिक 'एफ' ने टीआईएफएसी द्वारा 10-12 अगस्त, 2022 को एकीकृत नीति निर्माण को सक्षम करने के लिए सिस्टम विश्लेषण पर अंतर्राष्ट्रीय सम्मेलन में "हाइड्रो-मौसम संबंधी आपदाओं के प्रबंधन के लिए आईएमडी की प्रारंभिक चेतावनी और पूर्वानुमान सेवाओं" पर एक मुख्य वार्ता दी।

डॉ. दिव्या सुरंद्रन, वैज्ञानिक 'सी' ने इंस्टीट्यूट फॉर क्लाइमेट चेंज स्टडीज (आईसीसीएस), केरल द्वारा आयोजित वेबिनार श्रृंखला के एक भाग के रूप में 11 अगस्त, 2022 को "जलवायु परिवर्तन की बेहतर समझ के लिए क्षेत्र विशिष्ट जलवायु सूचकांकों का महत्व" पर एक ऑनलाइन व्याख्यान दिया।

श्री ए. के. सिंह, वैज्ञानिक 'ई' ने 13 अगस्त, 2022 को सेना कार्यालय पंचक्ला में VINBAX-2022 (मानवीय सहायता और आपदा राहत अभ्यास के लिए वियतनाम और भारतीय सेना का एक संयुक्त अभ्यास) में एक व्याख्यान दिया।

डॉ. ए. कश्यपी, वैज्ञानिक 'एफ' को 30 अगस्त, 2022 को वाकाड में आयोजित वार्षिक ग्रेप सेमिनार, 2022 में "मौसम पूर्वानुमान की भूमिका और चरम घटनाओं की भविष्यवाणी" विषय पर व्याख्यान देने के लिए आमंत्रित किया गया था।

डॉ. (श्रीमती) मनोरमा मोहंती, वैज्ञानिक 'ई' ने 1 सितंबर, 2022 को आईआईपीएच, गांधीनगर में "मौसम विज्ञान और पूर्वानुमान" पर एक विशेषज्ञ व्याख्यान दिया।

डॉ. डी. आर. पटनायक, वैज्ञानिक 'एफ' ने गंभीर मौसम पूर्वानुमान परियोजना-दक्षिण एशिया (एसडब्ल्यूएफपी-एसए) के दौरान "एसडब्ल्यूएफपी ग्लोबल सेंटर आईएमडी" पर भाषण दिया, डब्ल्यूएमओ द्वारा आयोजित क्षेत्रीय उपप्रोग्राम प्रबंधन टीम (आरएसएमटी) की बैठक 6-7 सितंबर, 2022 के दौरान ऑनलाइन आयोजित की गई थी। बैठक की अध्यक्षता आईएमडी के महानिदेशक डॉ. एम. महापात्र ने की।

श्री राजा आचार्य, मौसम विज्ञानी 'ए' ने 12 सितंबर, 2022 को डब्ल्यूएमओ एसओटी (शिप ऑब्जर्वेशन टीम) द्वारा आयोजित डब्ल्यूएमओ एसओटी मेटाडेटा वेबिनार में भाग लिया।

श्री धन सिंह, मौसम विज्ञानी 'ए', श्री राजा आचार्य, मौसम विज्ञानी 'ए', सुश्री लक्ष्मी पाठक, एस.ए. और सुश्री ट्विंकल ग्रोवर, एस.ए. ने 16-17 सितंबर, 2022 को डीजीएम पब्लिकेशन द्वारा आयोजित वेबिनार "स्कोपस और साइंस डायरेक्ट के साथ उच्च गुणवता वाली पत्रिकाओं में शोध प्रकाशन के मार्गों को नेविगेट करना" में भाग लिया। MoES, KCRNet और एल्सेवियर।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 16 सितंबर, 2022 को आईजीएन ओपन यूनिवर्सिटी, नई दिल्ली द्वारा आयोजित "जलवायु, ओजोन और सतत जीवन" पर आमंत्रित व्याख्यान दिया।

डॉ. एस. ओ. शॉ, वैज्ञानिक 'एफ' और श्री सुनीत दास, वैज्ञानिक 'ई' को 19 सितंबर, 2022 को "हाइड्रो मौसम विज्ञान उपकरण और मौसम पूर्वानुमान और प्रारंभिक वामिंग प्रणाली" विषय पर व्याख्यान देने के लिए असम डॉन बॉस्को विश्वविद्यालय अज़ारा, गुवाहाटी द्वारा आमंत्रित किया गया था।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 23 सितंबर, 2022 को एनआईडीएम द्वारा आयोजित वेबिनार "2047 - आपदा जोखिम न्यूनीकरण" में पैनलिस्ट के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने द इकोनॉमिक टाइम्स द्वारा टैंगो रूम में आयोजित इकोनॉमिक टाइम्स बेस्ट टेक ब्रांड्स के तीसरे संस्करण में "तूणान की नजर में: सटीक अनुमानों के माध्यम से प्राकृतिक आपदाओं से निपटना" विषय पर विशिष्ट मुख्य भाषण दिया। , ताज विवांता, बेंगलुरु, बेंगलुरु 23 सितंबर, 2022 को।

डॉ. एस. बालाचंद्रन, वैज्ञानिक 'एफ' ने 23 सितंबर, 2022 को साउथ इंडियन चैंबर ऑफ कॉमर्स द्वारा आयोजित कॉन्क्लेव में "ब्लू इकोनॉमी के लिए मौसम और जलवायु सेवाओं की भूमिका" पर व्याख्यान दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 26-30 सितंबर, 2022 के दौरान दक्षिण एशियाई जलवायु आउटलुक फोरम (एसएएससीओएफ-23) और जलवायु सेवा उपयोगकर्ता फोरम (सीएसयूएफ) के तेईसवें सत्र में भाग लिया।

डॉ. सबीर अली, वैज्ञानिक 'सी', विषय पर वार्ता, दक्षिण एशियाई जलवायु आउटलुक फोरम (एसएएससीओएफ-23) के तेईसवें सत्र में "उत्तर हिंद महासागर (एनआईओ) पर प्रायोगिक उष्णकिटबंधीय चक्रवात मौसमी पूर्वानुमान" 26-29 सितंबर, 2022 तक आयोजित किया गया।

श्री एस. के. माणिक, वैज्ञानिक 'सी' ने जामिया मिलिया इस्लामिया विश्वविद्यालय, नई दिल्ली द्वारा 01-02 नवंबर 2022 के दौरान भारत में भूस्खलन जोखिम मूल्यांकन और शमन पर राष्ट्रीय सम्मेलन में भूस्खलन के कारण होने वाली आकस्मिक बाढ़ पर प्रारंभिक चेतावनी प्रणाली पर एक व्याख्यान दिया। उन्होंने "समाज और तैयारियों पर भूस्खलन का प्रभाव" विषय पर तकनीकी सत्र की सह-अध्यक्षता भी की।

श्री यू. के. शेंडे, वैज्ञानिक 'ई' ने 17 से 21 अक्टूबर, 2022 तक शुरू होने वाले विभिन्न प्रशिक्षुओं को "एविएशन इंस्ड्रमेंटेशन रिफ्रेशर कोर्स" विषय पर व्याख्यान दिया है। इस प्रशिक्षण की व्यवस्था आईसीआई प्रशिक्षण केंद्र (आईसीआईटीसी), नई दिल्ली द्वारा की गई थी।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने एमओईएस द्वारा आयोजित सतर्कता जागरूकता सप्ताह में 31 अक्टूबर, 2022 को "सतर्कता पहलू" पर व्याख्यान दिया।

डॉ. सबीअली, सी.टी., वैज्ञानिक 'सी' ने 2 नवंबर, 2022 को ऑनलाइन आयोजित थर्ड पोल रीजनल क्लाइमेट सेंटर (टीपीआरसीसी) बैठक में "एमएमसीएफएस सत्यापन" पर एक व्याख्यान दिया।

श्री यू. के. शेंडे, वैज्ञानिक 'ई' ने 4 नवंबर, 2022 को एफटीसी बैच नंबर 194 के लिए एयरपोर्ट मौसम विज्ञान उपकरण (एएमआई) के व्यावहारिक पर व्याख्यान दिया है।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई' आईआईटीएम में 10 नवंबर 2022 को "आईआईटीएम मानसून पर चर्चा सेमिनार" और "मौसमी पूर्वानुमान 2022 दक्षिण पश्चिम मानसून" पर व्याख्यान दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 16 तारीख को वाडिया इंस्टीट्यूट ऑफ हिमालयन जियोलॉजी (डब्ल्यूआईएचजी), देहरादून में तीसरे फेडरेशन ऑफ इंडियन जियोसाइंस एसोसिएशन (एफआईजीए) में "बाढ़: अतीत और वर्तमान" विषय पर जलवायु परिवर्तन और चरम मौसम पर पूर्ण व्याख्यान दिया। नवंबर, 2022.

श्री नहुष कुलकर्णी, वैज्ञानिक 'सी', एम.सी. अगरतला को 16 नवंबर, 2022 को केंद्रीय प्रशिक्षण संस्थान (सीटीएल) में "एम.सी. अगरतला की प्रारंभिक चेतावनी महत्व और मौसम विज्ञान सेवा" पर व्याख्यान देने के लिए आमंत्रित किया गया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 17 नवंबर, 2022 को आईआईटीएम, पुणे में आईआईटीएम हीरक जयंती स्थापना दिवस में भाग लिया।

श्री यू. के. शंडे, वैज्ञानिक 'ई' ने भूतल उपकरणों पर पंद्रह वायु सेना अधिकारियों को व्याख्यान दिया है जो 19 से 23 दिसंबर, 2022 तक एसआईडी, पुणे में प्रशिक्षण पर थे।

डॉ. सत्यभान बी. रत्ना, वैज्ञानिक 'ई' ने 22 नवंबर, 2022 को डब्ल्यूएमओ, डब्ल्यूसीआरपी द्वारा आयोजित एक वेबिनार "पृथ्वी प्रणाली परिवर्तन की व्याख्या और भविष्यवाणी वेबिनार शृंखला - द ट्रिपल ला नीना" में भाग लिया।

श्री सुकुमार रॉय, मौसम विज्ञानी 'ए' ने 23 नवंबर, 2022 को SAMETI, नरेंद्रपुर रामकृष्ण मिशन के छात्रों को एग्रोमेट उपकरणों पर व्याख्यान दिया।

डॉ. एस. बंद्योपाध्याय, आरएमसी कोलकाता ने 29 नवंबर, 2022 को आरएमसी कोलकाता में पश्चिम बंगाल सरकार के ब्लॉक आपदा प्रबंधन के नवनियुक्त अधिकारियों को "मौसम और आपदा प्रबंधन" पर एक व्याख्यान दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 1 दिसंबर, 2022 को डीएसटी-एनआईएएस प्रशिक्षण कार्यक्रम में "मौसम विज्ञान: हालिया प्रगति" पर व्याख्यान दिया।

डॉ. दिव्या सुरंद्रन, वैज्ञानिक 'सी' ने केंद्रीय जल आयोग, केंद्रीय जल आयोग राष्ट्रीय जल अकादमी, पुणे के नव भर्ती जूनियर इंजीनियरों के लिए प्रेरण प्रशिक्षण कार्यक्रम के एक भाग के रूप में 12 दिसंबर, 2022 को "जलवायु स्टेशनों के लिए मौसम विज्ञान उपकरण और माप" पर एक व्याख्यान दिया।

डॉ. कृपान घोष, वैज्ञानिक 'एफ' ने एग्रील में उन्नत संकाय प्रशिक्षण केंद्र द्वारा आयोजित राष्ट्रीय प्रशिक्षण कार्यक्रम में "कृषि मौसम विज्ञान में हालिया प्रगति" पर "भारत में कृषि मौसम सलाहकार सेवाओं में हालिया प्रगति" पर एक आमंत्रित व्याख्यान दिया। मौसम विज्ञान (सीएएफटी), कृषि महाविद्यालय, पुणे 15 दिसंबर, 2022 को।

डॉ. आशुतोष कुमार मिश्रा, वैज्ञानिक 'डी' ने बी.टेक. को "देश के कृषक समुदाय के लिए आईएमडी सेवाएं" पर व्याख्यान दिया। 15 दिसंबर, 2022 को नवसारी कृषि विश्वविद्यालय, गुजरात के (कृषि इंजीनियरिंग) छात्र और संकाय सदस्य।

श्री राहुल सक्सैना, वैज्ञानिक 'एफ' और डॉ. अशोक कुमार दास, वैज्ञानिक 'ई' ने एनडब्ल्यूपी डिवीजन द्वारा 19-23 दिसंबर, 2022 के दौरान "मौसम पूर्वानुमान सेवाओं में एनडब्ल्यूपी उत्पादों की व्याख्या और अनुप्रयोग" पर एनडब्ल्यूपी रिफ्रेशर कोर्स में हाइड्रोमेट सेवाओं और एफएफजीएस एप्लिकेशन में एनडब्ल्यूपी मॉडलिंग के उपयोग पर कई संसाधनपूर्ण व्याख्यान दिए। आईएमडी.

डॉ. एच. आर. बिस्वास, वैज्ञानिक 'एफ', एम. सी. भुवनेश्वर ने 19-23 दिसंबर, 2022 के दौरान एनडब्ल्यूपी डिवीजन, आईएमडी, नई दिल्ली द्वारा आयोजित "मौसम पूर्वानुमान सेवाओं में एनडब्ल्यूपी उत्पादों की व्याख्या और अनुप्रयोग" पर पुनश्चर्या पाठ्यक्रम के लिए 23 दिसंबर, 2022 को भारी वर्षा पर व्याख्यान दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 20 दिसंबर, 2022 को एनडब्ल्यूपी रिफ्रेशर कोर्स के दौरान "साइक्लोन मैंडोस की निगरानी और पूर्वानुमान: एक केस स्टडी" पर व्याख्यान दिया।

सुश्री मोनिका शर्मा, वैज्ञानिक 'डी' ने 20 दिसंबर, 2022 को एनडब्ल्यूपी रिफ्रेशर कोर्स के दौरान "साइक्लोन मैंडोस की निगरानी और पूर्वानुमान के लिए एसओपी: एक केस स्टडी" पर एक व्याख्यान दिया।

6.6. जागरूकता एवं आउटरीच कार्यक्रम

उद्घाटन समारोह के दौरान डॉ. एम. महापात्र, महानिदेशक, आईएमडी

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 23 जनवरी, 2022 को इंडिया गेट पर नेताजी सुभाष चंद्र बोस की होलोग्राम प्रतिमा के उद्घाटन समारोह में भाग लिया। भारत के माननीय प्रधान मंत्री ने भारत में एंड टू एंड चक्रवात प्रतिक्रिया प्रणाली की सराहना की। हाल के वर्षों में मरने वालों की संख्या में कमी आई है।

श्री अशोक राजा एस.के., वैज्ञानिक 'सी' ने 9-15 मार्च 2022 के दौरान पृथ्वी भवन, लोदी रोड, नई दिल्ली में एचआरडीसी, सीएसआईआर द्वारा सामान्य प्रशासन और वितीय मुद्दों पर एक हाइब्रिड कार्यक्रम में भाग लिया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 12 मार्च को जे.सी. बोस विज्ञान एवं प्रौद्योगिकी विश्वविद्यालय, वाईएमसीए, फरीदाबाद द्वारा 7-12 मार्च, 2022 तक "पर्यावरण स्थिरता के लिए प्रौद्योगिकी में हालिया प्रगति (रेट्स)" विषय पर आयोजित लघु अविधि प्रशिक्षण कार्यक्रम के समापन समारोह में मुख्य अतिथि भाषण दिया। मार्च, 2022.

आईएमडी नई दिल्ली में एनडब्ल्यूपी डिवीजन ने 19-23 दिसंबर, 2022 के दौरान हाइब्रिड मोड में "क्षेत्रीय अन्प्रयोगों के लिए एनडब्ल्यूपी उत्पादों की व्याख्या" के बारे में आईएमडी के फील्ड पूर्वानुमानकर्ताओं के लिए एक प्रशिक्षण कार्यशाला का आयोजन किया। आईएमडी के विभिन्न कार्यालयों से लगभग 50 वैज्ञानिकों ने भौतिक रूप से भाग लिया और लगभग इतने ही वैज्ञानिकों ने ऑनलाइन माध्यम से भाग लिया। कार्यक्रम का उद्घाटन 19 दिसंबर, 2022 को मौसम विज्ञान महानिदेशक डॉ. एम. महापात्र की अध्यक्षता में आयोजित किया गया था। डॉ. डी. आर. पटनायक, प्रम्ख एनडब्ल्यूपी, आईएमडी नई दिल्ली ने स्वागत भाषण दिया और "भारत मौसम विज्ञान विभाग में संख्यात्मक मौसम भविष्यवाणी के ऐतिहासिक परिप्रेक्ष्य" पर उद्घाटन भाषण भी दिया। डॉ. एम. महापात्र, डीजीएम आईएमडी ने अपने संबोधन में प्रतिभागियों को इस अवसर को गंभीरता से लेने और इस पुनश्चर्या पाठ्यक्रम के दौरान कई नई चीजें सीखने के लिए प्रोत्साहित किया। उन्होंने इस बात पर भी जोर दिया कि उन्हें विचार-विमर्श में सक्रिय रूप से शामिल होना चाहिए। उन्होंने आगे इस बात पर जोर दिया कि प्रशिक्षण के बाद उन्हें पूर्वान्मान में अन्प्रयोगों के लिए एनडब्ल्यूपी डेटा का उपयोग करके अपने कार्यस्थल में बहुत काम करना चाहिए।

आईएमडी के विभिन्न कार्यालयों के वैज्ञानिक

सरकार के सतही क्षेत्र पर्यवेक्षकों के लिए दो दिवसीय मौसम विज्ञान अवलोकन प्रशिक्षण। उत्तराखंड का संचालन एमसी देहरादून, आईएमडी, भारत सरकार और उत्तराखंड राज्य आपदा प्रबंधन प्राधिकरण, सरकार द्वारा किया गया था। उत्तराखंड के और एस्ट्रा माइक्रोवेव प्रोडक्ट्स लिमिटेड, हैदराबाद द्वारा 14 दिसंबर से 15 दिसंबर, 2022 तक मौसम विज्ञान केंद्र, देहरादून में आयोजित। श्री बिक्रम सिंह, वैज्ञानिक 'एफ', श्री रोहित थपलियाल, वैज्ञानिक 'सी' और श्री अंकित शर्मा, एस.ए. ने प्रशिक्षुओं को व्याख्यान दिया। श्री भौमिक इंद्रवाल, मेट-'ए' और श्री अंकित शर्मा, एस.ए. ने प्रशिक्षुओं को मौसम संबंधी अवलोकनों के बारे में प्रदर्शन और प्रशिक्षण दिया।

श्री बिक्रम सिंह, वैज्ञानिक 'एफ' और अन्य

श्री धनीश के., वैज्ञानिक 'सी', एम. ओ. पारादीप ने 6 को मत्स्य पालन निदेशालय, ओडिशा, कटक के तहत खारा जल प्रशिक्षण केंद्र, पारादीप द्वारा आयोजित प्रशिक्षुओं (सागर मित्र) को व्याख्यान देने के लिए एक वक्ता के रूप में "कौशल उन्नयन और जागरूकता कार्यक्रम" पर प्रशिक्षण में भाग लिया। अक्टूबर, 2022 हवाईअड्डे पर मौसम विज्ञान उपकरण 18 अक्टूबर, 2021 से 21 अक्टूबर, 2022 तक।

राष्ट्रीय/अंतर्राष्ट्रीय सहयोग

एग्रीमेट डिवीजन, आईएमडी, पुणे ने क्षेत्रीय एकीकृत बहु-खतरा प्रारंभिक चेतावनी प्रणाली (आरआईएमईएस) और यूके मौसम कार्यालय (यूकेएमओ) के सहयोग से "कृषि मौसम सलाह की तैयारी के लिए परिचालन प्रक्रियाएं: जान और अनुभव साझा करने की कार्यशाला" पर पांच दिवसीय कार्यशाला का आयोजन किया। 30 मई-3 जून, 2022 के दौरान बांग्लादेश और नेपाल के अधिकारी। डॉ. एस. डी. अत्री, वैज्ञानिक कार्यशाला का उद्घाटन 'जी' ने किया।

एग्रीमेट डिवीजन, आईएमडी, पुणे ने "एग्रोमेट सलाह की तैयारी के लिए परिचालन प्रक्रियाओं" पर पांच दिवसीय कार्यशाला का आयोजन किया

ऑनलाइन साक्षात्कार पैनल चर्चा/साक्षात्कार

श्री सनी चुग, वैज्ञानिक 'सी' ने 19-22 जुलाई 2022 के दौरान महिका हॉल, एमओईएस में अंटार्कटिका के 42^{वं} भारतीय वैज्ञानिक अभियान के लिए लॉजिस्टिक्स टीम के चयन के लिए साक्षात्कार पैनल के सदस्य के रूप में भाग लिया।

एम. सी. गंगटोक से श्री हिमांशु गुप्ता, एस.ए. ने 14 अक्टूबर, 2022 और 15 अक्टूबर, 2022 को "राज्य आपदा प्रबंधन प्राधिकरणों के दूसरे क्षेत्रीय सम्मेलन" में भाग लिया। उन्होंने "पहाड़ों में व्यापक आपदाओं के लिए प्रारंभिक चेतावनी प्रणाली स्थापित करने पर मॉडरेट पैनल चर्चा" में भाग लिया।

डॉ. ओ. पी. श्रीजीत, वैज्ञानिक 'ई' और डॉ. सत्यभान बी., वैज्ञानिक 'ई' रत्न ने 31 अक्टूबर, 2022 को विश्व बैंक और बांग्लादेश की टीमों के साथ "हाइड्रोमेट ज्वाइंट लर्निंग एक्सरसाइज" में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 3 दिसंबर, 2022 को एनडीएमए द्वारा आयोजित "शहरी बाढ़" पर दूरदर्शन के लिए "आपदा सामना" एपिसोड के लिए पैनलिस्ट के रूप में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 16 अक्टूबर, 2022 को साउथ एशियन इंस्टीट्यूट फॉर एडवांस्ड रिसर्च एंड डेवलपमेंट (एसएआईएआरडी), अकादिमक सह अनुसंधान संस्थान, कोलकाता द्वारा आयोजित भारत-2047 पर एक पैनल चर्चा में भाग लिया। एसएआईएआरडी ने प्राइड ऑफ इंडिया से सम्मानित किया इस अवसर पर **डॉ. एम. महापात्र** को पुरस्कार दिया गया।

SAIARD ने डॉ. एम. महापात्रा को प्राइड ऑफ इंडिया अवॉर्ड से सम्मानित किया

6.7. आगंत्कों

नागांव कॉलेज (असम) के पंद्रह (15) छात्रों ने 4 जनवरी, 2022 को आरएमसी गुवाहाटी का दौरा किया। उन्हें सतह वेधशाला, एडब्ल्यू और एआरजी पर प्रदर्शन दिया गया।

एम.सी. चंडीगढ़ ने 14 फरवरी, 2022 को पंजाब कृषि विश्वविद्यालय, लुधियाना के छात्रों और अनुसंधान विदवानों का दौरा आयोजित किया और उन्हें मौसम विज्ञान केंद्र चंडीगढ़ द्वारा प्रदान की जा रही सेवाओं के बारे में जानकारी दी। श्री मनमोहन सिंह, वैज्ञानिक 'एफ' ने आगंतुकों को व्याख्यान दिया।

जाब कृषि विश्वविद्यालय, लुधियाना के छात्रों और शोधार्थियों का एम.सी. में दौरा, चंडीगढ़

ज़ाकिर हुसैन दिल्ली कॉलेज के लगभग उन्नीस (19) छात्रों ने 15 मार्च, 2022 को "सेंट्रल हाइड्रोमेट ऑड्जर्वेटरी" का दौरा किया।

ज़िकर हुसैन दिल्ली कॉलेज के छात्रों ने "सेंट्रल हाइड्रोमेट ऑब्ज़र्वेटरी" का दौरा किया

आर. सी. टेक्निकल, अहमदाबाद के इकसठ (61) छात्रों ने मेट का दौरा किया। केंद्र, अहमदाबाद में 25 मार्च, 2022 को वैज्ञानिक एम. सी. अहमदाबाद द्वारा उन्हें आईएमडी की कार्यप्रणाली के बारे में जानकारी दी गई।

श्री के. एस. कंडासामी, आईएएस, निदेशक, और श्री एम. एस. वैद्यनाथन, वाटरशेड प्रबंधन विशेषज्ञ आपदा प्रबंधन, तिमलनाडु आपदा जोखिम न्यूनीकरण एजेंसी ने प्रभावी प्रबंधन के लिए तिमलनाडु राज्य में स्वचालित मौसम स्टेशन और रडार स्थापित करने में आईएमडी से सहयोग मांगने के लिए 22 अप्रैल, 2022 को आईएमडी का दौरा किया। विभिन्न जल-मौसम संबंधी आपदाओं के बारे में। टीम ने आईएमडी के विभिन्न तकनीकी प्रभागों का दौरा किया।

जनवरी-मार्च के दौरान दिल्ली एनसीआर के छात्रों सहित लगभग 121 आगंतुकों ने सेंट्रल हाइड्रोमेट वेधशाला का दौरा किया।

दिल्ली एनसीआर से छात्र सेंट्रल हाइड्रोमेट ऑब्जर्वेटरी पहुंचे

आईएमडी के महानिदेशक डॉ. एम. महापात्र ने कमोडोर जी. रामबाबू के साथ बैठक की

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 14 जून, 2022 को दोनों संगठनों के बीच समन्वय में सुधार के लिए कमोडोर जी. रामबाबू, कमोडोर (नौसेना और मौसम विज्ञान), नौसेना समुद्र विज्ञान और मौसम विज्ञान निदेशालय, भारतीय नौसेना के साथ एक बैठक की।

एफएमआई अधिकारियों ने पर्यावरण निगरानी और पूर्वानुमान में परियोजना मोड सहयोग के लिए आईएमडी का दौरा किया

एफएमआई अधिकारियों ने पर्यावरण निगरानी और पूर्वानुमान में परियोजना मोड सहयोग के लिए आईएमडी का दौरा किया।

एम्स नई दिल्ली के वरिष्ठ रेजिडेंट डॉक्टरों के एक समूह, भारतीय नौसेना के अधिकारियों और डीपीएस आरएन स्कूल गाजियाबाद के छात्रों सहित लगभग 68 आगंतुकों ने जुलाई 2022 से सितंबर 2022 तक सेंट्रल हाइड्रोमेट वेधशाला का दौरा किया।

सितंबर 2022 के दौरान सेंट्रल हाइड्रोमेट वेधशाला का दौरा करके भारतीय नौसेना के अधिकारियों के साथ व्यावहारिक बातचीत

पृथ्वी विज्ञान मंत्रालय (एमओईएस) के सचिव **डॉ. एम.** रिवचंद्रन ने दृष्टि आरवीआर सिस्टम की कार्यक्षमता सिहत मौसम सेवाओं की सुविधाओं की समीक्षा करने के लिए 5 जुलाई, 2022 को मेट वॉच ऑफिस, आईजीआई हवाईअड्डा, पालम का दौरा किया और एटीसी-एएआई में आईएमडी के अधिकारियों के साथ बातचीत की। , डायल (एयर साइड)।

नाइजीरिया के प्रतिनिधिमंडल ने 20 जुलाई, 2022 को आईएमडी का दौरा किया

श्री डी. एस. मिश्रा, मुख्य सचिव, उत्तर प्रदेश ने 8 अगस्त, 2022 को डॉ. एम. महापात्र, महानिदेशक, आईएमडी और वैज्ञानिकों के साथ उत्तर प्रदेश में अवलोकन नेटवर्क में सुधार और आईएमडी से तकनीकी सहायता के बारे में चर्चा करने के लिए आईएमडी का दौरा किया।

हीरालाल मज्मदार मेमोरियल कॉलेज फॉर वुमेन, कोन्नगर, हुगली की छात्राओं ने 26 अगस्त, 2022 को आरएमसी कोलकाता का दौरा किया।

अन्ना इंस्टीट्यूट ऑफ मैनेजमेंट, चेन्नई द्वारा 'तटीय खतरा प्रबंधन' पर आयोजित तीन दिवसीय प्रशिक्षण कार्यक्रम के मध्य स्तर के अधिकारियों ने 18 अगस्त, 2022 को आरएमसी चेन्नई का दौरा किया।

राज्य आपदा प्रबंधन प्राधिकरण (एसडीएमए) के अधिकारियों ने 28 जुलाई, 2022 को मौसम विज्ञान सेवाओं के कामकाज को समझने के लिए एमसी अगरतला का दौरा किया।

एनओएए यूएसए के पर्यावरण मॉडलिंग केंद्र के विरष्ठ वैज्ञानिक **डॉ. विजय तल्लाप्रगदा** ने 29 दिसंबर को आईएमडी का दौरा किया और **डॉ. एम. महापात्र**, डीजीएम आईएमडी और अन्य अधिकारियों के साथ विभिन्न मॉडलिंग विकासों पर चर्चा की, जिन्हें भारत के साथ अंतरराष्ट्रीय समझौते के तहत आईएमडी के साथ साझा किया जा सकता है।

संयुक्त अरब अमीरात के रक्षा विभाग के प्रतिनिधिमंडल ने क्षेत्रीय विशिष्ट मौसम विज्ञान केंद्र (आरएसएमसी), नई दिल्ली/आईएमडी की चक्रवात चेतावनी सेवाओं और मौसम पूर्वानुमान सेवाओं का अवलोकन करने के लिए 13 दिसंबर को आईएमडी, नई दिल्ली का दौरा किया।

आनंद कृषि विश्वविद्यालय, आनंद के बी. ए. कॉलेज ऑफ एग्रीकल्चर के बी.एससी (कृषि) के 143 छात्रों ने 10 और 11 नवंबर, 2022 को एमसी अहमदाबाद का दौरा किया।

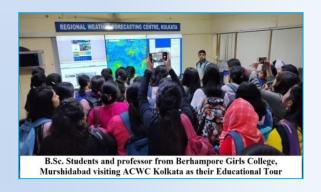
श्री अशोक चंद्र पांडा, माननीय विज्ञान एवं प्रौद्योगिकी मंत्री, भारत सरकार। ओडिशा सरकार ने 12 नवंबर को आईएमडी का दौरा किया।

जमाअली इंग्लिश मीडियम स्कूल के 7वीं कक्षा के 30 छात्रों ने 26/11/2022 को मौसम के पूर्वानुमान के बारे में जानकारी प्राप्त करने के लिए हमारे मौसम विभाग का दौरा किया है।

पब्लिक हेल्थ फाउंडेशन ऑफ इंडिया (पीएचएफआई) के 6 आगंतुकों ने 29 दिसंबर, 2022 को एम.सी. अहमदाबाद का दौरा किया।

हिमालयन इंस्टीट्यूट ऑफ मेडिकल साइंसेज, देहरादून के 2 संकायों के 36 एमबीबीएस छात्रों ने 28 अक्टूबर, 2022 और 18 अक्टूबर, 2022 को मौसम विज्ञान केंद्र देहरादून परिसर का दौरा किया और सरकार के 16 एमबीबीएस छात्रों ने मौसम विज्ञान केंद्र देहरादून परिसर का दौरा किया। 28 अक्टूबर, 2022 को 02 संकायों के साथ दून मेडिकल कॉलेज, देहरादून।

एमसी देहरादून का दौरा करते विभिन्न कॉलेजों के छात्र


दिल्ली पब्लिक स्कूल, जोका के शिक्षकों के साथ 300 छात्रों ने अपने शैक्षिक दौरे के रूप में नवंबर 22 के दौरान तीन चरणों में आरएमसी कोलकाता का दौरा किया।

प्रशांत चंद्र महालनोबिस महाविद्यालय, कोलकाता के भूगोल ऑनर्स के 27 छात्रों और प्रोफेसरों ने 7 दिसंबर, 2022 को अपने शैक्षिक दौरे के रूप में आरएमसी कोलकाता का दौरा किया।

बीएससी के 45 नंबर बरहामपुर गर्ल्स कॉलेज, मुर्शिदाबाद के छात्र और प्रोफेसर 15 दिसंबर, 2022 को शैक्षिक दौरे के रूप में आरएमसी कोलकाता आए।

आरएमसी कोलकाता ने 23 दिसंबर, 22 से 27 दिसंबर, 22 तक नेताजी सुभाष मैदान, मध्यमग्राम चौमाथा, 24 परगना (एन), डब्ल्यूबी में "17^{वी} विज्ञान प्रदर्शनी सह पर्यावरण जागरूकता मेला" में भाग लिया। आरएमसी कोलकाता की प्रदर्शनी टीम ने विभिन्न प्रदर्शन प्रदर्शित किए थे -आइटम और मिले। आगंतुकों को मौसम पूर्वानुमान में उपकरणों और इसके निहितार्थ तथा उपयोग के महत्व से परिचित कराया गया। डॉ. एस. बंद्योपाध्याय, डीडीजीएम, आरएमसी कोलकाता ने प्रदर्शनी में आगंतुकों के समक्ष व्याख्यान दिया।

आईआईटी दिल्ली के सदस्य, जल शक्ति मंत्रालय, भारत सरकार से नामाई गंगे परियोजना, किरोड़ीमल कॉलेज, दिल्ली विश्वविद्यालय, ग्रेटर नोएडा इंस्टीट्यूट ऑफ टेक्नोलॉजी, लक्ष्मण पब्लिक स्कूल, डीपीएस मथुरा रोड, कैम्ब्रिज स्कूल श्रीनिवासपुरी सहित लगभग 267 आगंतुकों ने सेंट्रल हाइड्रोमेट वेधशाला का दौरा किया। अक्टूबर से दिसंबर, 2022.

दिल्ली विश्वविद्यालय के किरोड़ीमल कॉलेज के छात्र

सिक्किम गवर्नमेंट कॉलेज, नामची के मास्टर प्रथम और तृतीय सेमेस्टर के अठारह छात्रों ने अपने शिक्षकों के साथ 17 दिसंबर, 2022 को एमओ गंगटोक का दौरा किया, श्री अभिषेक पटेल, एस.ए. ने आगंतुकों में भाग लिया।

मदर्स पब्लिक स्कूल, भुवनेश्वर के 160 छात्रों ने दो समूहों में - एक 20 अक्टूबर, 2022 को और दूसरा 21 अक्टूबर, 2022 को - अपने शिक्षकों के साथ एम.सी. का दौरा किया।

मॉडर्न सीनियरिटी सेकेंडरी स्कूल, गंगटोक के 105 छात्रों ने अपने शिक्षकों/कर्मचारियों के साथ एम.ओ. का दौरा किया। शैक्षणिक भ्रमण के रूप में गंगटोक, 14 अक्टूबर 2022 को।

23 नवंबर 2022 को सोमैया कॉलेज ऑफ साइंस एंड कॉमर्स, मुंबई के छात्रों और संकायों के लिए छात्र बातचीत और प्रयोगशाला का दौरा आयोजित किया गया था।

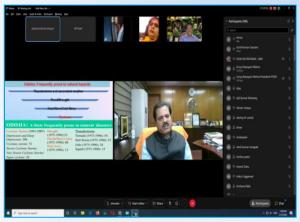
लगभग। इस कार्यालय में आए 1318 आगंतुकों को जलवायु, कृषि मौसम और उपकरण प्रभाग की विभिन्न गतिविधियों के बारे में जानकारी दी गई, जिसमें 33 शिक्षक और 133 कैडेट शामिल थे, जिन्होंने इस अविध के दौरान सीएजीएमओ, प्णे का दौरा किया।

10 नवंबर, 2022 को 30 की संख्या में "अंतर्राष्ट्रीय पुनर्बीमाकर्ताओं के विदेशी प्रतिनिधियों" ने हेड सीआरएस कार्यालय, पुणे का दौरा किया।

6.8. महत्वपूर्ण घटनाएँ 2022

आईएमडी स्थापना दिवस, 2022

आईएमडी स्थापना दिवस, 2022 का उद्घाटन डॉ. जितेंद्र सिंह, माननीय मंत्री दवारा किया गया


डॉ. जितेंद्र सिंह, माननीय राज्य मंत्री, डॉ. एम. रिवचंद्रन, सचिव, MoES, डॉ. एम. महापात्र, महानिदेशक, आईएमडी और डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' दौरान आईएमडी स्थापना दिवस

आईएमडी ने 14 जनवरी, 2022 को हाइब्रिड मोड में अपना 147^{वां} स्थापना दिवस मनाया। कार्यक्रम का उद्घाटन मुख्य अतिथि **डॉ. जितेंद्र सिंह**, माननीय राज्य मंत्री (स्वतंत्र प्रभार) विज्ञान और प्रौद्योगिकी और पृथ्वी विज्ञान मंत्रालय, राज्य मंत्री, प्रधान मंत्री कार्यालय, कार्मिक, लोक शिकायत और पेंशन मंत्रालय, विभाग द्वारा किया गया। परमाणु ऊर्जा और अंतरिक्ष विभाग, भारत सरकार। माननीय मंत्री ने सटीक भविष्यवाणी और पूर्वानुमान और चेतावनियों के समय पर प्रसार के साथ जीवन और संपत्ति की सुरक्षा में आईएमडी की पहल और योगदान की सराहना की। उन्होंने इसकी अवलोकन और मॉडलिंग क्षमताओं को और बढ़ाने में हरसंभव सहायता

का भी आश्वासन दिया। इस अवसर पर डॉ. एम. महापात्र, महानिदेशक, आईएमडी द्वारा स्वागत भाषण दिया गया, जिसमें सेक्टर विशिष्ट और समय पर पूर्वानुमान प्रदान करने के लिए आईएमडी की अवलोकन, मॉडलिंग, पूर्वानुमान और प्रारंभिक चेतावनी क्षमताओं को बढ़ाने में आईएमडी द्वारा की गई पहल पर प्रकाश डाला गया, डॉ. एम. रविचंद्रन, सचिव, एमओईएस, दवारा अध्यक्षीय भाषण। सम्मानित अतिथियों द्वारा विशेष संबोधन डॉ. एस. डी. अत्री, वैज्ञानिक द्वारा धन्यवाद। 'जी' और समारोह के लिए आयोजन समिति के अध्यक्ष। **डॉ. एम. रविचंद्रन**, सचिव, एमओईएस, सम्मानित अतिथियों द्वारा विशेष संबोधन श्री आर. के. माथ्र, लददाख के माननीय उपराज्यपाल, श्री जामयांग त्सेरिंग नामग्याल, माननीय संसद सदस्य, लद्दाख, डॉ. के. सिवन, अध्यक्ष, इसरो और धन्यवाद ज्ञापन डॉ. एस. डी. और समारोह के लिए अत्री, वैज्ञानिक 'जी' द्वारा। आयोजन समिति के अध्यक्ष।

विश्व मौसम विज्ञान दिवस 2022

भारत मौसम विज्ञान विभाग ने 23 मार्च, 2022 को विश्व मौसम विज्ञान दिवस मनाया। इस अवसर पर, आईएमडी मुख्यालय और आईएमडी के विभिन्न उप-कार्यालयों में विभिन्न गतिविधियों का आयोजन किया गया, जिसमें आईएमडी के विभिन्न प्रभागों और कार्यालयों द्वारा प्रदान की गई सेवाओं पर प्रकाश डाला गया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी प्रकाश डालते हुए आईएमडी की सेवाएं

इस अवसर पर, आरएमसी चेन्नई ने थीम के साथ डब्ल्यूएम दिवस मनाया - "प्रारंभिक चेतावनी और प्रारंभिक कार्रवाई - आपदा जोखिम न्यूनीकरण के लिए हाइड्रोमेटोरोलॉजिकल और जलवायु सूचना"। ओपन हाउस, मौसम विज्ञान प्रदर्शनी और विषय पर वैज्ञानिक वार्ता की व्यवस्था की गई।

डॉ. एस. बालचंद्रन ने मुख्य अतिथि का स्वागत किया डॉ. बालाजी नरसिम्हन, प्रोफेसर, आईआईटी मद्रास

में डब्ल्यूएमओ दिवस पर आगंतुक वेधशाला, मीनांबक्कम, चेन्नई

सीआरएस, पुणे ने 23 मार्च, 2022 को एक मौसम विज्ञान प्रदर्शनी और वेबिनार की व्यवस्था करके विश्व मौसम विज्ञान दिवस को हाइब्रिड मोड में मनाया। मौसम विज्ञान और भूकंपीय उपकरणों का लाइव प्रदर्शन, छात्रों के लिए अपने स्वयं के मौसम अवलोकन लेने के लिए 'मौसम पर्यवेक्षक बने' खंड, एक लघु वृतचित्र प्रदर्शनी में 'एक्सपीडिशन टू अंटार्कटिका' विषय पर फिल्म दिखाई गई। छात्रों, वैज्ञानिकों, विद्वानों, पत्रकारों और आम जनता सिहत लगभग 1300 लोगों ने प्रदर्शनी का दौरा किया। सभी आगंतुकों ने बड़े उत्साह के साथ अपनी टिप्पणियाँ अंकित कीं।

सीआरएस, पुणे में डब्ल्यूएम दिवस पर आगंतुक

समझौते के पत्र

आईएमडी और मणिकरण एनालिटिक्स लिमिटेड ने बिजली क्षेत्र के लिए मौसम सेवाओं पर अनुसंधान एवं विकास के लिए आईएमडी के महानिदेशक **डॉ. एम.** महापात्र की अध्यक्षता में 4 मार्च, 2022 को समझौते पत्र पर हस्ताक्षर किए।

5 अप्रैल, 2022 को चक्रवात पूर्व अभ्यास बैठक

आईएमडी ने तैयारियों की समीक्षा करने, आवश्यकताओं का जायजा लेने, चक्रवात सीजन अप्रैल-जून, 2022 की योजना बनाने और साझा करने के लिए 5 अप्रैल, 2022 को डॉ. मृत्यंजय महापात्र, महानिदेशक, आईएमडी की अध्यक्षता में ऑनलाइन प्री-साइक्लोन अभ्यास बैठक का आयोजन किया। हितधारकों के साथ आईएमडी दवारा नई पहल। **डॉ. महापात्र**, महानिदेशक, आईएमडी ने अपने उद्घाटन भाषण में पूर्वान्मान से लेकर अंतिम मील कनेक्टिविटी तक विभिन्न मुद्दों पर चर्चा की और उन क्षेत्रों पर चर्चा की, जिनमें उपयोगकर्ता की आवश्यकता के अन्सार विशेष रूप से अन्कृतित क्षेत्र विशिष्ट सलाह में सुधार की आवश्यकता है। उन्होंने प्रतिभागियों को सूचित किया कि आईएमडी ने अवलोकन नेटवर्क, क्षमताओं और पूर्वानुमान तकनीकों में महत्वपूर्ण स्धार हासिल किए हैं। परिणामस्वरूप, ट्रैक, लैंडफॉल, तीव्रता और भारी वर्षा, तेज हवा और त्र्फान की चेतावनी सहित प्रतिकृल मौसम के संदर्भ में चक्रवात के पूर्वानुमानों में एक आदर्श बदलाव आया है। उन्होंने प्रतिभागियों को 2022 के दौरान चक्रवात चेतावनी सेवाओं में नए विकास के बारे में भी जानकारी दी।

आईएमडी का चक्रवात चेतावनी प्रभाग का संस्थागत तंत्र

दक्षिण एशियाई जलवायु आउटल्क फोरम

दक्षिण एशियाई जलवायु आउटलुक फोरम (एसएएससीओएफ-22) और जलवायु सेवा उपयोगकर्ता फोरम (सीएसयूएफ) का 22^{वां} सत्र 26-28 अप्रैल, 2022 तक ऑनलाइन आयोजित किया गया है।

अंतर्राष्ट्रीय योग दिवस 2022 के लिए काउंट डाउन कार्यक्रम

अंतर्राष्ट्रीय योग दिवस 2022 के लिए काउंट डाउन कार्यक्रम 27 मई, 2022 को भारत मौसम विज्ञान विभाग के परिसर में आयोजित किया गया था। माननीय केंद्रीय मंत्री डॉ. जितंद्र सिंह ने कार्यक्रम में अपनी शानदार उपस्थिति दर्ज कराई और योग क्रियाएं कीं। उन्होंने लोगों को अपने दैनिक जीवन में योगाभ्यास करने के लिए प्रोत्साहित किया। डॉ. मृत्युंजय महापात्र, महानिदेशक, आईएमडी, डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' और डॉ. गोपाल आयंगर, वैज्ञानिक 'जी', पृथ्वी विज्ञान मंत्रालय ने भी इस कार्यक्रम में भाग लिया और योग गतिविधियों का अभ्यास किया। इस कार्यक्रम में आईएमडी और पृथ्वी विज्ञान मंत्रालय के कई अन्य अधिकारियों ने भाग लिया। अंतर्राष्ट्रीय योग दिवस-2022 का विषय "मानवता के लिए योग" था।

डॉ. जितेंद्र सिंह, माननीय मंत्री, डॉ. मृत्युंजय महापात्र, महानिदेशक, आईएमडी और अन्य

WMO कार्यकारी परिषद की बैठक

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 20 से 24 जून 2022 के दौरान जिनेवा, स्विट्जरलैंड में आयोजित डब्ल्यूएमओ की कार्यकारी परिषद (ईसी-75) के **75**^{वें} सत्र में भाग लिया।

डब्ल्यूएमओ की कार्यकारी परिषद ने यह सुनिश्चित करने के लिए प्रमुख रणनीतिक प्रस्तावों को हरी झंडी दे दी है कि अगले पांच वर्षों में प्रारंभिक चेतावनी सेवाएं सभी तक पहुंचे और ग्रीनहाउस गैस निगरानी प्रणाली स्थापित की जाए।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी "डब्ल्यूएमओ कार्यकारी परिषद की बैठक" के दौरान

समझौता ज्ञापन

2 मई, 2022 को जलवायु से संबंधित संयुक्त अध्ययन और परियोजनाओं के लिए आईआईटी बॉम्बे, मुंबई और आईएमडी (सीआर एंड एस पुणे) के बीच समझौता जापन पर हस्ताक्षर किए गए।

समझौता ज्ञापन

3 जून, 2022 को भारत मौसम विज्ञान विभाग और पावर सिस्टम ऑपरेशन कॉर्पोरेशन लिमिटेड (POSOCO) के बीच "भारतीय विद्युत प्रणाली के

बेहतर प्रबंधन के लिए पूरे भारत में पावर सिस्टम ऑपरेटरों द्वारा भारत मौसम विज्ञान विभाग द्वारा प्रदान की गई मौसम संबंधी जानकारी का उपयोग" के संबंध में एक समझौता जापन पर हस्ताक्षर किए गए। विश्लेषण के प्रयोजन के लिए"।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और श्री एस. आर. नरसिम्हन; हस्ताक्षर कार्यक्रम के दौरान POSOCO के सीएमडी

8 सितंबर, 2022 को दोनों संगठनों में भविष्य के अनुसंधान प्रयासों को मजबूत करने के लिए आईएमडी और पंजाबी विश्वविद्यालय, पटियाला, पंजाब के बीच समझौता ज्ञापन पर हस्ताक्षर किए गए।

पंजाबी विश्वविद्यालय के कुलपित और अन्य अधिकारियों के साथ डीजीएम डॉ. मृत्युंजय महापात्र

आईएमडी और एसएआईएआरडी, कोलकाता के बीच समझौता ज्ञापन पर हस्ताक्षर

22 सितंबर, 2022 को IMD नई दिल्ली में **मौसम** विज्ञान पर सहयोगात्मक अनुसंधान के लिए IMD और SAIARD, कोलकाता के बीच समझौता ज्ञापन पर हस्ताक्षर किए गए।

76 म्वतंत्रता दिवस, 2022 का जश्न

डॉ. जितेंद्र सिंह माननीय विज्ञान और प्रौद्योगिकी मंत्रालय और पृथ्वी विज्ञान मंत्रालय के राज्य मंत्री (स्वतंत्र प्रभार), प्रधान मंत्री कार्यालय के राज्य मंत्री; कार्मिक, लोक शिकायत और पेंशन मंत्रालय; परमाण् ऊर्जा विभाग और अंतरिक्ष विभाग, डॉ. एम. रविचंद्रन, सचिव, पृथ्वी विज्ञान मंत्रालय, **डॉ. राजेश एस. गोखले**, सचिव, जैव प्रौदयोगिकी विभाग, डॉ. श्रीवारी चंद्रशेखर, सचिव, विज्ञान और प्रौद्योगिकी विभाग, डॉ. एन. कलैसेल्वी, सचिव, औद्योगिक अनुसंधान विभाग के सचिव और सीएसआईआर के महानिदेशक ने 15 अगस्त, 2022 को आईएमडी का दौरा किया। आईएमडी के महानिदेशक डॉ. एम. महापात्र ने एमओईएस, डीबीटी, डीएसटी, डीएसआईआर, आईएमडी के माननीय मंत्री, सचिवों और अधिकारियों का स्वागत किया। और एनसीएमआरडब्ल्यूएफ, स्कूली बच्चों और मीडिया ने आईएमडी की महत्वपूर्ण गतिविधियों पर प्रकाश डाला। माननीय मंत्री ने 76^{वं} स्वतंत्रता दिवस के श्भ अवसर पर आईएमडी परिसर में राष्ट्रीय ध्वज फहराया और सभा को संबोधित किया।

डॉ. जीतेन्द्र सिंह माननीय मंत्री राष्ट्रीय ध्वज फहराना

आईएमडी में 76^{वें} स्वतंत्रता दिवस कार्यक्रम में भाग लेने वाले

स्वतंत्रता दिवस, 2022

डॉ. ए. एस. गीता अग्निहोत्री, वैज्ञानिक 'एफ' ने एमसी बेंगलुरु में स्वतंत्रता दिवस, 2022 के अवसर पर राष्ट्रीय ध्वज फहराया।

राष्ट्रीय ध्वज फहराने के बाद डॉ. गीता अग्निहोत्री

डॉ. एस. बंद्योपाध्याय, वैज्ञानिक 'एफ', ने 76^{वं} भारतीय स्वतंत्रता दिवस पर राष्ट्रीय ध्वज फहराया। आरएमसी कोलकाता की ओर से सांस्कृतिक कार्यक्रम का भी आयोजन किया गया था।

डॉ. एस. बंद्योपाध्याय लघुचित्र पकड़े हुए राष्ट्रीय ध्वज का

10 अगस्त, 2022 को डॉ. एस. बंद्योपाध्याय, वैज्ञानिक 'एफ' ने भारत की आजादी के 75 वर्ष पूरे होने के अवसर पर, मौसम, जलवायु और जलवायु परिवर्तन पर एक जागरूकता कार्यक्रम "आजादी का अमृत महोत्सव" के उपलक्ष्य में एक व्याख्यान दिया।

इस अवसर पर आयोजित निबंध लेखन, फोटोग्राफी, ड्राइंग और क्विज़ प्रतियोगिता में स्कूलों और कॉलेजों के छात्रों ने विभिन्न प्रतियोगिताओं में भाग लिया था। स्कूलों और कॉलेजों के प्रतिभागियों को पुरस्कार प्रदान किए गए और भागीदारी के लिए प्रमाण पत्र जारी किए गए।

डॉ. एस. बंद्योपाध्याय, वैज्ञानिक 'एफ' आयोजनों के विजेताओं के साथ

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 8 जून, 2022 को आजादी का अमृत महोत्सव के तहत 'विश्व महासागर दिवस' के अवसर पर उत्सव कार्यक्रम में भाग लिया।

समझौता जापन पर हस्ताक्षर आईएमडी और एमिटी यूनिवर्सिटी, गुड़गांव

19 जुलाई, 2022 को जलवायु और पर्यावरण निगरानी और अनुसंधान के क्षेत्र में सहयोग के लिए आईएमडी और एमिटी यूनिवर्सिटी गुरुग्राम के बीच समझौता ज्ञापन पर हस्ताक्षर किए गए।

दक्षिण एशियाई जलवायु आउटलुक फोरम (एसएएससीओएफ-23)

दक्षिण एशियाई जलवायु आउटलुक फोरम (एसएएससीओएफ-23) और जलवायु सेवा उपयोगकर्ता फोरम (सीएसयूएफ) का तेईसवां सत्र 26-29 सितंबर, 2022 के दौरान आयोजित किया गया था। कार्यशाला का उद्देश्य ओएनडी 2022 सीज़न के लिए आम सहमति आउटलुक तैयार करना था। 29 तारीख को आयोजित जलवायु सेवा उपयोगकर्ता फोरम (सीएसयूएफ) का उद्देश्य ओएनडी 2022 के लिए आम सहमति आउटलुक की व्याख्या को समझना और दक्षिण एशिया के लिए जलवायु सेवा के लिए एप्लिकेशन/नए उत्पादों का अध्ययन करना था।

एसएएससीओएफ 23 और सीएसयूएफ - ऑनलाइन सत्र

दूसरी दक्षिण एशिया हाइड्रोमेट फोरम (एसएएचएफ) कार्यकारी परिषद की बैठक

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने प्रगति की समीक्षा करने, एसएएचएफ क्षेत्रीय में पहचानी गई रणनीतियों और कार्यों पर सहमति व्यक्त करने के लिए 19-20 सितंबर, 2022 को बैंकॉक, थाईलैंड में आयोजित "दूसरी दक्षिण एशिया हाइड्रोमेट फोरम (एसएएचएफ) कार्यकारी परिषद बैठक" में भाग लिया। दृष्टिकोण, वर्तमान चरण से परे एसएएचएफ को बनाए रखने के लिए एक तंत्र स्थापित करें और आगे का रास्ता तय SAHF EC का गठन **NMHS** महानिदेशक/निदेशकों द्वारा एक प्रबंधकीय परिषद के रूप में किया जाता है जो SAHF के कार्यान्वयन के लिए रणनीतिक योजनाएँ विकसित करता है।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी "द्वितीय दक्षिण एशिया हाइड्रोमेट फोरम (एसएएचएफ) कार्यकारी परिषद की बैठक" के दौरान

मौसम विज्ञान केन्द्र लखनऊ के नये भवन का लोकार्पण

श्रीमती उत्तर प्रदेश की माननीय राज्यपाल आनंदी बेन पटेल ने 31 अक्टूबर, 2022 को डॉ. एम. रविचंद्रन, सचिव, एमओईएस, **डॉ. एम. महापात्र**, महानिदेशक, आईएमडी और श्री खुशवीर सिंह, प्रमुख आरएमसी नई दिल्ली की गरिमामय उपस्थिति में मौसम विज्ञान केंद्र लखनऊ के नए भवन का उदघाटन किया।

श्रीमती आनंदी बेन पटेल, उत्तर प्रदेश की माननीय राज्यपाल और डॉ. एम. रविचंद्रन, सचिव, MoES, के साथ। डॉ. एम. महापात्र, महानिदेशक, आईएमडी

"आकाश फॉर लाइफ" पर राष्ट्रीय सम्मेलन और प्रदर्शनी

आईआईआरएस, देहरादून द्वारा 4 नवंबर से 7 नवंबर, 2022 तक उत्तरांचल विश्वविद्यालय, देहरादून में "जीवन के लिए आकाश" विषय पर एक राष्ट्रीय सम्मेलन और प्रदर्शनी का आयोजन किया गया और इस प्रदर्शनी में मौसम विज्ञान केंद्र देहरादून ने भी भाग लिया। एमसी देहरादून ने अपने सतह और ऊपरी वायु अवलोकन उपकरणों का प्रदर्शन किया और 02 आरएस/आरडब्ल्यू अवलोकन का प्रदर्शन किया। माननीय राज्यपाल लेफ्टिनेंट जनरल (सेवानिवृत) गुरमित सिंह, सरकार। उत्तराखंड सरकार ने 4 नवंबर, 2022 को प्रदर्शनी के उद्घाटन के अवसर पर गणमान्य व्यक्तियों और आगंतुकों की उपस्थिति में आरएस/आरडब्ल्यू उड़ान जारी की।

उत्तराखंड के माननीय राज्यपाल लेफ्टिनेंट जनरल (सेवानिवृत्त) आईटी सिंह, "आकाश फॉर लाइफ" प्रदर्शनी में आरएस/आरडब्ल्यू उड़ान का विमोचन करते हुए

सचिव, MoES, भारत सरकार, आईएमडी, एमसी देहराद्न के स्टॉल का दौरा

आईएमडी ने फकीर मोहन विश्वविद्यालय के साथ एक समझौता ज्ञापन पर हस्ताक्षर किए, बालासोर

भारत मौसम विज्ञान विभाग ने 17 अक्टूबर, 2022 को दोनों संगठनों के बीच अनुसंधान और विकास गतिविधियों को बढ़ाने के लिए फकीर मोहन विश्वविद्यालय, बालासोर के साथ एक समझौता ज्ञापन पर हस्ताक्षर किए।

आईएमडी ने दोनों संगठनों के बीच अनुसंधान एवं विकास गतिविधियों को बढ़ाने के लिए 26 नवंबर, 2022 को संबलपुर विश्वविद्यालय के साथ एक समझौता ज्ञापन पर हस्ताक्षर किए। डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 26 नवंबर, 2022 को संबलपुर विश्वविद्यालय द्वारा आयोजित होने वाले 23वं ओडिशा विज्ञान 'ओ' परिबेश कांग्रेस (ओबीपीसी) के दौरान "जलवायु परिवर्तन से निपटने में विज्ञान और प्रौद्योगिकी" पर मुख्य भाषण दिया।

आईएमडी ने संबलपुर विश्वविद्यालय के साथ एक समझौता जापन पर हस्ताक्षर किए 26 नवंबर, 2022 को

मौसम विज्ञान केंद्र बेंगलुरु के अधिकारियों ने 20 अक्टूबर, 2022 को कार्यक्रम के लाइव प्रसारण में भाग लिया और "मिशन लाइफ" के लिए प्रतिज्ञा ली। लाइव टेलीकास्ट में भाग लेने के लिए स्कूल/छात्र वेधशाला दौरे पर थे।

लाइव टेलीकास्ट के दौरान एम. सी. बेंगल्र के अधिकारी

सचिव, MoES, भारत सरकार, 6 नवंबर, 2022 को उत्तरांचल विश्वविद्यालय, देहरादून में "आकाश फॉर लाइफ" राष्ट्रीय सम्मेलन और प्रदर्शनी में आरएस/आरडब्ल्यू उड़ान के बारे में जानकारी देते हुए।

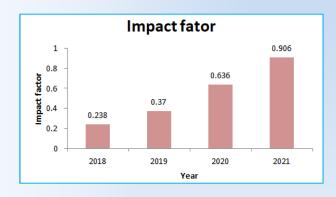
उत्तरांचल विश्वविद्यालय, देहराद्न में राष्ट्रीय सम्मेलन एवं प्रदर्शनी

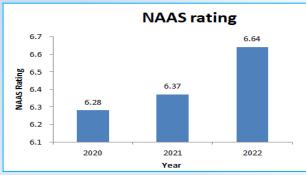
डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 10-18 नवंबर, 2022 के दौरान मिस्र में आयोजित सीओपी-27 में भाग लिया। उन्होंने स्टेट ऑफ एशिया क्लाइमेट 2021 के विमोचन पर सभा को भी संबोधित किया।

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने आयोजित सीओपी-27 में भाग लिया 10-18 नवंबर, 2022 के दौरान मिस्र में

अध्याय ७

अनुसंधान प्रकाशन


मौसम (पूर्व में मौसम विज्ञान, जल विज्ञान और भूभौतिकी का पूर्व भारतीय जर्नल), जनवरी 1950 में स्थापित, विभाग द्वारा प्रकाशित त्रैमासिक शोध पत्रिका है। यह मौसम विज्ञान, जल विज्ञान और भूभौतिकी के क्षेत्र में मूल वैज्ञानिक अनुसंधान कार्यों के प्रकाशन के लिए एक प्रमुख वैज्ञानिक अनुसंधान पत्रिका है। मौसम को थॉमसन रॉयटर यू.एस.ए. द्वारा अनुक्रमित और सारगर्भित किया जा रहा है।


अंतर्राष्ट्रीय शोध पत्रिका 'मौसम' की उपलब्धियाँ

भारत मौसम विज्ञान विभाग की त्रैमासिक अंतर्राष्ट्रीय शोध पत्रिका 'मौसम' 2021 से ऑनलाइन (https://mausamjournal.imd.gov.in/index.php/MAUSAM) हो गई है। वैज्ञानिक पत्रिकाओं का. कुछ निर्णायक बिंदु ये हैं:

- सभी शोध लेख ('मौसम', 1950 की उत्पत्ति के बाद से) वेबसाइट पर अपलोड कर दिए गए हैं और उन सभी के लिए डिजिटल ऑब्जेक्ट आइडेंटिफ़ायर (डीओआई) सक्रिय कर दिए गए हैं और सफलतापूर्वक काम कर रहे हैं।
- पिछले तीन वर्षों में पत्रिका द्वारा कई एजेंसियों द्वारा मूल्यांकित प्रभाव कारक को अधिकतम सीमा तक बढ़ाया गया है।

पत्रिका को निम्न द्वारा मूल्यांकित किया गया है: जर्नल उद्धरण रैंकिंग (जेसीआर): 2021 में 0.636 से 0.906(वेब ऑफ साइंस)/1.01(स्कोपस), राष्ट्रीय कृषि विज्ञान अकादमी: 2022 में 6.37 से 6.64

7.1. 'मौसम' में प्रकाशित शोध योगदान

वाई. ई. ए. राज और बी. अमुधा, 2022, "उत्तर पूर्व मानसून के मौसम के दौरान तटीय तमिलनाडु में वर्षा के दैनिक चक्र की सीमा और इसके अंतर-मौसमी बदलाव", मौसम, 73, 1, 1-18. https://doi.org/10.54302/mausam.v73i1.4984.

रंजन फुकन और डी. साहा, 2022, "त्रिपुरा में वर्षा के **रुझान का विश्लेषण"**, *मौसम*, **73**, 1, 27-36. https://doi.org/10.54302/mausam.v73i1.5078.

बिक्रम सिंह और रोहित थपलियाल, 2022, "मानसून सीजन 2017 के दौरान उत्तराखंड में देखी गई बादल फटने की घटनाएं और उनका विश्लेषण", मौसम, 73, 1, 91-104. https://doi.org/10.54302/mausam.v73i1.5084.

सिंह, वी.पी., मैथ्यू, जे. और वर्मा, आई.जे., 2022, "असुविधा (पवन और थर्मल) सूचकांकों का उपयोग करके मध्य प्रदेश में ग्रीष्मकालीन-2018 का अंतर-स्थानिक ताप भेद्यता मूल्यांकन", मौसम, 73, 1, 105-114. https://doi.org/10.54302/ mausam.v73i1.5085.

संदीप निवडांगे, चिन्मय जेना, पूजा वी. पवार, गौरव गोवर्धन, श्रेयशी देबनाथ, संतोष कुलकर्णी, प्रसन्न लोनकर, आकाश विस्पुते, नरेंद्र धनगर, अविनाश पारदे, प्रदीप अचरजा, विनोद कुमार, प्रफुल्ल यादव, रचना कुलकर्णी, मनोज खरे और एन. आर. कर्मलकर, 2022। "राष्ट्रव्यापी COVID-19 लॉकडाउन का भारत में वायु गुणवत्ता पर प्रभाव", मौसम, 73, 1, 115-128. https://doi.org/10.54302/mausam. v73i1.1475.

प्रशांत दास और सोमनाथ दत्ता, 2022, "एक कोने के पहाड़ से उत्तेजित आंतरिक गुरुत्वाकर्षण तरंगों से जुड़े प्रवाह के लिए एक गणितीय मॉडल", मौसम, 73, 1, 181-188. https://doi.org/10.54302/mausam. v73i1.5091.

प्रवर्तबी नस्कर, 2022, "**हाल के दशकों में कोलकाता** (भारत) में वर्षा, तापमान और तूफान में बदलाव", मौसम, **73**, 1, 193-202. https://doi.org/10.54302/mausam. v73i1.5093.

चौ. श्री देवी, पी. सुनीता, के. के. सिंह, वी. आर. दुरई, डी. आर. पटनायक और ए. के. दास, 2022, "भारत भर में जिला स्तर पर मानसून 2017 की भारी वर्षा की घटनाओं के लिए जीएफएस टी1534 के पूर्वानुमान कौशल का मूल्यांकन", मौसम, 73, 2, 217-228. https://doi.org/10.54302/mausam.v73i2.5473.

मुख्तार अहमद, बप्पा दास, सोनम लोटस और महबूब अली, 2022, "जम्मू और कश्मीर, भारत में पश्चिमी विक्षोभ की आवृत्ति और वर्षा के रुझान पर एक अध्ययन: 1980-2019", मौसम, 73, 2, 283-294. https://doi.org/10.54302/mausam.v73i2.698.

प्रियंका सिंह और नरेश कुमार, 2022, "पूर्वोत्तर भारत में वर्षा की प्रवृत्ति और अस्थायी परिवर्तनशीलता का विश्लेषण", मौसम, 73, 2, 307-314. https://doi.org/10.54302/mausam.v73i2.5479.

अशोक कुमार दास, बी.पी. यादव, चारू और ज्योत्सना ढींगरा, 2022, "मात्रात्मक वर्षा पूर्वानुमान के लिए डब्ल्यूआरएफ (एआरडब्ल्यू) और जीएफएस के प्रदर्शन का मूल्यांकन और हाल के वर्षों के दौरान भारत के नदी उप-घाटियों में इसका मूल्यवर्धन", मौसम, **73**, 2, 315-340. https://doi.org/10.54302/mausam.v73i2.5480.

साह्, राजेश कुमार, भीष्म त्यागी, नरेश कृष्ण विस्सा और मृत्युंजय महापात्र, 2022, "पूर्वी भारत में संवहनी उपलब्ध संभावित ऊर्जा (सीएपीई) और संवहनी निषेध (सीआईएन) की प्री-मानसून थंडरस्टॉर्म सीज़न जलवायु विज्ञान", मौसम, 73, 3, 565- 586. https://doi.org/10.54302/mausam. v73i3.1247.

रे, के. और कन्नन, बी., 2022, "**रडार डेटा का उपयोग करके 2015 में चेन्नई में बादल फटने की पुष्टि**", मौसम, **73**, 3, 587-596. https://doi.org/ 10.54302/mausam.v73i3.214.

पाई, डी.एस. और स्मिता नायर, 2022, "भारत में चरम तापमान की घटनाओं पर अल-नीनो-दक्षिणी दोलन (ईएनएसओ) का प्रभाव", मौसम, 73, 3, 597-606. https://doi.org/10.54302/mausam.v 73i3.5932.

अंसारी, एम. आई. और रंजू मदान, 2022, "**भारत मौसम** विज्ञान विभाग का वैश्विक जलवायु अवलोकन प्रणाली ऊपरी वायु नेटवर्क (जीयूएएन) का निर्वाह", मौसम, **73**, 3, 637-650. https://doi.org/ 10.54302/mausam.v73i3.2197.

तोमर, सी.एस., 2022, "23 मई, 2016 को उत्तर पश्चिम भारत में अभूतपूर्व मौसम गतिविधि", मौसम, 73, 3, 705-709. https://doi.org/10.54302/mausam.v73i3.5938.

फुकन, रंजन, शिविंदर सिंह और डी. साहा, 2022, "स्थिरता सूचकांकों का उपयोग करके अगरतला में तूफान की भविष्यवाणी के लिए एक उद्देश्यपूर्ण विधि", मौसम, 73, 3, 710-716. https://doi.org/10.54302/mausam. v73i3.5939.

थपलियाल, रोहित, 2022, "अंटार्किटका में 37वें भारतीय वैज्ञानिक अभियान के दौरान भारती स्टेशन, लार्समैन हिल्स, अंटार्किटका में देखे गए स्ट्रैटोस्फेरिक ओजोन और मौसम संबंधी मापदंडों का विश्लेषण", मौसम, 73, 3, 607-616. https://doi.org/10.54302/ mausam.v73i3.1322.

सिंह, टी.पी. और एस.एम. देशपांडे, 2022, "भारतीय स्टेशनों पर 1951-80 के औसत मूल्यों के संबंध में 1981-2010 की अविध के तापमान और वर्षा के साधनों में परिवर्तन", मौसम, 73, 3, 499-510. https://doi.org/10.54302/mausam. v73i3.5930.

नस्कर प्रवर्तबी और सोमनाथनस्कर, 2022, "मध्यम-सीमा तापमान भविष्यवाणी के लिए एक नया न्यूरोकंप्यूटिंग **दृष्टिकोण**", *मौसम*, **73**, 3, 537-554. https://doi.org/ 10.54302/mausam. v73i3.5931.

आर. शर्मा, एस. कुमार, आर. के. गिरि और एल. पाठक, "उपग्रह डेटा के साथ उच्च तापमान वाले मौसम की घटनाओं की निगरानी", मौसम, 73, 4, 763-774. https://doi.org/10.54302/mausam. v73i4.5885.

एन. धनगर, ए. एनपारडे, आर. अहमद, डी. एसवीवीडीप्रसाद और डी. मणिलाल, "डिसीजन ट्री का उपयोग करते हुए आईजीआई हवाईअड्डे, नई दिल्ली, भारत पर अब कोहरा छा रहा है", मौसम, 73, 4, 785-794. https://doi.org/10.54302/ mausam.v73i4.3441.

आर. एस. शर्मा और एस. डी. कोटाल, "झारखंड में वर्षा, तापमान और चरम घटनाओं की अस्थायी प्रवृत्ति का विश्लेषण", मौसम, 73, 4, 795-808. https://doi.org/10.54302/mausam.v73i4.3520.

आर. शर्मा, एस. प्रकाश, आर. एस. यादव, आर. के. गिरी और एल. पाठक, "भारत में एरोसोल और प्रतिक्रियाशील ट्रेस गैसों की सांद्रता का प्रभाव", मौसम, 73, 4, 809-818. https://doi.org/10.54302/mausam.v 73i4.5846.

पी. सिन्हा, एस. सिंह और पी. सरोज, "नई दिल्ली, भारत में इसके अग्रदूतों और मौसम संबंधी मापदंडों के साथ सतही ओजोन (ओ3) का संबंध", मौसम, 73, 4, 819-832. https://doi.org/10.54302/mausam.v73i4.5510.

टी. मल्हन, निष्ठा सहगल, आर. के. गिरी, चंदन मिश्रा, लक्ष्मी पाठक, राहुल शर्मा, शिव कुमार, 2022, "उपमंडलवार वर्षा का तुलनात्मक विश्लेषण इन्सैट-उडी बनाम जमीन आधारित अवलोकन", मौसम, 73, 4, 833-842. https://doi.org/10.54302/mausam.v73i4.5877.

ए. के. दास, पी. श्रीवास्तव और बी.पी. यादव, "भारत के विभिन्न शहरों के लिए आइसोप्नुवियल विश्लेषण और तीव्रता अविध आवृत्ति (आईडीएफ) वक्र", मौसम, 73, 4, 887-898. https://doi.org/ 10.54302/mausam.v73i4.3530

एम. रानालकर, आर. के. गिरि और एल. पाठक, "उत्तरपूर्वी मानसून 2015 के दौरान प्रायद्वीपीय भारत में बाढ़: धर्मोडायनामिकल, डायनेमिक और माइक्रोफिजिकल विशेषताओं के अवलोकन संबंधी पहलू", मौसम, 73, 4, 899-914. https://doi.org/10.54302/mausam.v73i4.5853.

7.2. अतिरिक्त विभागीय पत्रिकाओं (भारतीय और विदेशी पत्रिकाओं) में प्रकाशित शोध योगदान

मोहम्मद में अज़हरुद्दीन, सतीश कुमार रेगोंडा, नागा रत्न कोप्पर्थी, 2022, "हैदराबाद शहर, भारत में उच्च अस्थायी रिज़ॉल्यूशन वर्षा की जलवायु संबंधी विशेषताएं", शहरी जलवायु, 42, मार्च 2022, 101118.

मोहम्मद सुहैल मीर, अनूप कुमार मिश्रा और कट्टुकोटा नागमणि, 2022, "एशिया की सबसे बड़ी मीठे पानी की झील पर भूमि उपयोग भूमि कवर परिवर्तन और समाज और पर्यावरण पर उनका प्रभाव", अरेबियन जर्नल ऑफ जियोसाइंसेज, 15, 4, 1-11. https:// doi.org/10.1007/ s12517-022-10094-6.

सी. टी. सबेराली, ओ. पी. श्रीजीत, नचिकेता आचार्य, दिव्या ई सुरेंद्रानंद डी. एस. पई, "एक हाइब्रिड सांख्यिकीय/गतिशील मॉडल का उपयोग करके बंगाल की खाड़ी के ऊपर उष्णकटिबंधीय चक्रवातों का मौसमी पूर्वानुमान", इंटरनेशनल जर्नल ऑफ क्लाइमेटोलॉजी, 1, 2, 1-14. https://doi.org/10.1002/joc.7651.

रॉबर्ट नील, गैलिना गुएंटचेव, टी. अरुलालन, जे. ओएन रॉबिंस, रिक क्रोकर, आशीष मित्रा और ए. जयकुमार, 2022, "उच्च प्रभाव वाले मौसम के लिए संभावित मध्यम-सीमा पूर्वानुमान उपकरणों के भीतर भारत में पूर्वनिर्धारित मौसम पैटर्न का अनुप्रयोग" मौसम संबंधी अनुप्रयोग , 29, 3, 1-22. https://doi.org/10.1002/met.2083.

राहुल श्रीधर, अवनीश वार्ष्णय और एम. धान्या, "ऑप्टिकल और एसएआर सेंटिनल छवियों के समय शृंखला विश्लेषण का उपयोग करके गन्ना फसल वर्गीकरण: एक गहन शिक्षण हिष्टिकोण", रिमोट सेंसिंग लेटर्स, 13, 8, 812-821. https://doi.org/10.1080/2150704X.2022.2088254.

श्यामा मोहन्ती, रघु नदीमपल्ली, सुधीर जोसेफ, अखिल श्रीवास्तव, आनंद के. दास, उमा सी. मोहंती और एस. सिल, "उच्च रिज़ॉल्यूशन युग्मित वायुमंडल महासागर मॉडल का उपयोग करके उष्णकिटबंधीय चक्रवात की तीव्रता पर महासागर का प्रभाव: बहुत गंभीर चक्रवाती तूफान का केस अध्ययन उत्तरी हिंद महासागर पर ओखी", रॉयल मौसम विज्ञान सोसायटी का त्रैमासिक जर्नल, 2022, 1-17. https://doi.org/10.1002/qj.4303.

कलशेट्टी, एम., चट्टोपाध्याय, आर., हंट, के., आर. फनीएम. आर., जोसेफ, एस., डी. आर. पटनायकंद ए. के. सहाय, 2022, "रीएनालिसिस और एस2एस पूर्वव्यापी पूर्वानुमान डेटा में 2013 उत्तराखंड चरम घटना के दौरान एड़ी परिवहन, तरंगमाध्य प्रवाह इंटरैक्शन और एड़ी फोर्सिंग", इंटरनेशनल जर्नल ऑफ क्लाइमेटोलॉजी, https://doi.org/10.1002/joc.7706.

डी. कुमार, ए. तिवारी, वी. अग्रवाल और के. श्रीवास्तव, 2022, "पीने योग्य पानी के रूप में वायुमंडलीय जल वाष्प संघनन और विशेषता विश्लेषण की जांच", पर्यावरण विज्ञान और प्रौद्योगिकी के अंतर्राष्ट्रीय जर्नल, 2022, https://doi.org/10.1007/s13762-022-04199-4.

ब्रहम प्रकाश यादव, एस. के. अशोक राजा, राहुल सक्सैना, हेमलता भारवानी, अशोक कुमार दास, राम कुमार गिरी, एस. "भारत के प्लवियल फ्लैश फ्लड पूर्वानुमान में हालिया प्रगति", हाइड्रोलॉजिकल और पर्यावरण प्रणालियों में अभिनव रुझान, एलएनसीई, 234, 605-643. https://doi.org/10.1007/ 978-981-19-0304-5_44.

तपज्योति चक्रवर्ती, संदीप पटनायक, हिमाद्री बैस्या और विजय विश्वकर्मा, 2022, "एक युग्मित मॉडलिंग फ्रेमवर्क का उपयोग करके उष्णकिटबंधीय चक्रवात फैलिन में महासागर उप-सतह प्रक्रियाओं की जांच: महासागर स्थितियों के प्रति संवेदनशीलता", एमडीपीआई महासागर, 3, 3, 364-388. https://doi.org/10.3390/oceans3030025.

रिज़वान अहमद, मृत्युंजय महापात्र, सुनीत द्विवेदी, राम कुमार गिरि, शिश कांत, 2022, "उत्तरी हिंद महासागर पर उष्णकिटबंधीय चक्रवात की तीव्रता का अनुमान लगाने के लिए उपग्रह सहमति (SATCON) एलगोरिदम का अवलोकन", जेस- स्प्रिंगर नेचर, आईएसएसएन 0253-4126, eISSN 0973-774X (ऑनलाइन), 131, 3, 100-100. https://doi.org/10.1007/s12040-022-01901-5.

प्रफुल्ल यादव, अविनाश एन. पारदे, नरेंद्र गोकुल धनगर, गौरव गोवर्धन, दीन मणि लाल, संदीप वाघ, दसारी एस.वी.वी.डी. प्रसाद, रिजवान अहमद और सचिन डी. घुडे, 2022, "अवलोकनों का उपयोग करके दिल्ली में घने कोहरे की घटना की उत्पति को समझना" उच्च-रिज़ॉल्यूशन मॉडल प्रयोग", मॉडल, पृथ्वी सिस्ट. पर्यावरण, 2022. https://doi.org/ 10.1007/s40808-022-01463-x.

अन्वेसा भट्टाचार्य, चंद्रा वेंकटरमन, तन्मय सरकार, अमित कुमार शर्मा, अरुशी शर्मा, एस. आनंद, दिलीप गांगुली, रोहिणी भावर, सागनिक डे, सुदीप्त घोष, 2022, "भारत में एयरोसोल जीवनचक्र का एक विश्लेषणः तीन सामान्य परिसंचरण की COALESCE अंतरतुलना मॉडल", जर्नल ऑफ जियोफिजिकल रिसर्चः एटमॉस्फियर, 127. e2022JD036457, https://doi.org/10.1029/2022JD036457.

चंदू, कविता, महालक्ष्मी, डी.वी., कंचना, ए.एल., महेश, पी., धर्मराजू, ए. और दसारी, माधवप्रसाद, "वायु प्रदूषण और कोविड-19: कोई कारण संबंध?", पर्यावरण संरक्षण और प्राकृतिक संसाधन, 33, 1, 32-45. https://doi.org/10.2478/oszn-2022-0003.

ए. मुन्सी, ए.पी. केसरकर, जे.एन. भाटे, के. सिंह, ए. पांचाल, जी. कुट्टी, एम. एम. अली, आशीष राउट्रे और आर. के. गिरि, 2022, "उत्तर भारतीय महासागरों पर तेजी से तीव्र उष्णकटिबंधीय चक्रवातों के तीन दुर्लभ मामलों के दौरान ऊपरी महासागर की बातचीत", जर्नल ऑफ ओशनोग्राफी, https://doi.org/10.1007/s10872-022-00664-3.

सत्य प्रकाश और एस. सी. भान, 2022, "उत्तर हिंद महासागर के चक्रवातों के लिए इन्सैट-उडी-व्युत्पन्न उच्च-रिज़ॉल्य्शन वास्तविक समय वर्षा उत्पादों का आकलन", प्राकृतिक खतरे (स्प्रिंगर प्रकृति), 999999, 1-17, 10.1007/s11069-022-05582-7.

कोटाल, एस.डी. और भट्टाचार्य, एस.के., 2022, "उष्णकिटबंधीय चक्रवात अम्फान के भूस्खलन से जुड़े वर्षा और पवन क्षेत्र पूर्वानुमान की विस्थापन त्रुटि में सुधार", उष्णकिटबंधीय चक्रवात अनुसंधान और समीक्षा, 11, 3, 146-162.

अर्पिता मुंसी, अमित केसरकर, ज्योति भाटे, कस्तूरी सिंह, अभिषेक पांचाल, गोविंदन कुट्टी और राम कुमार गिरि, 2022, "सिम्युलेटेड डायनामिक्स और थर्मोडायनामिक्स प्रक्रियाएं जो उत्तर भारतीय महासागरों पर दुर्लभ उष्णकटिबंधीय चक्रवातों की तीव्र तीव्रता का कारण बनती हैं", जेस. https://doi.org/10.1007/s12040-022-01951-9.

रामाश्रय, यादव, आर.के. गिरि, एस.सी. भान, 2022, "इन्सैट-3डी इमेजर का हाई-रिज़ॉल्यूशन आउटगोइंग लॉन्ग वेव रेडिएशन डेटा (2014-2020) और बादलों और पृथ्वी के रेडियंट एनर्जी सिस्टम (सीईआरईएस) डेटा के साथ इसकी तुलना", अंतरिक्ष अनुसंधान में प्रगति (2022). https://doi.org/ 10.1016/j.asr.2022.05.053.

रामाश्रय यादव, आर.के. गिरि, एन. पुवियारासन और एस.सी. भान, 2022, "जमीनी-आधारित जीएनएसएस-आईपीडब्ल्यूवी की मासिक सीमा के आधार पर भारतीय उपमहाद्वीप में वार्षिक, मौसमी, मासिक और दैनिक आईपीडब्ल्यूवी विश्लेषण और वर्षा का पूर्वानुमान", अंतरिक्ष अनुसंधान में प्रगति, https://doi.org/10.1016/j.asr.2022.07.0.

कविता चंद्र, धर्म राज्र, एसवीजे कुमार, माधव प्रसाद दसारी और वाईके रेड्डी, 2022, "राजीव गांधी अंतर्राष्ट्रीय हवाई अड्डे, हैदराबाद, तेलंगाना, भारत में कोहरे और परिणामी आर्थिक प्रभावों के कारण उड़ान नेविगेशन पर परिचालन संबंधी बाधाएं", एशियन जर्नल ऑफ वॉटर, पर्यावरण एवं प्रदूषण, 19, 4, 25-32. 10.3233/AJW220052.

गुहाठाकुरता, पी. और वाघ, एन., 2022 "एसपीआई और एसपीईआई का उपयोग करके दक्षिण-पश्चिम हिंद महासागर देशों में सूखे का विश्लेषण और वैश्विक एसएसटी के साथ उनका संबंध", प्राकृतिक संसाधन और विकास जर्नल, 12, 60-81. https://doi.org/10.18716/ojs/jnrd/2022.12.04.

ए. ए. फौसिया, जी. एच. अरविंद, एच. अच्युतान, एस. चक्रवर्ती, आर. चट्टोपाध्याय, ए. दत्ये, सी. मुर्कुटे, ए. एम. लोन, आर. एच. कृपलानी, एम. जी. यादव, पी. एम. मोहन, 2022, "गतिशील और वर्षा आइसोटोप का मॉड्यूलेशन भारत के दक्षिणी भागों में वायुमंडल के थर्मोडायनामिक चर", जल संसाधन अनुसंधान, 58, e2021WR030855. https://doi.org/10.1029/2021WR030855.

अनूप कुमार मिश्रा, ए.के. मित्रा और एस.सी. भान, 2022, 2022, "रिमोट सेंसिंग अवलोकनों से उच्च-रिज़ॉल्यूशन वर्षा अनुमानों का उपयोग करके भारत में वर्षा स्पेक्ट्रम में परिवर्तन पर", जर्नल ऑफ़ इंडिया सोसाइटी ऑफ़ रिमोट सेंसिंग (स्प्रिंगर), नवंबर, 2022. DOI: https://doi.org/ 10.1007/s12524-022-01622-8.

अनूप कुमार मिश्रा, ए.के. मित्रा और एस.सी. भान, 2022, "भारत में तूफान की वास्तविक समय की निगरानी के लिए उपग्रह अवलोकन का उपयोग करके तूफान सूचकांक के विकास की ओर", मौसम (रॉयल मौसम विज्ञान सोसायटी), अक्टूबर, 2022. DOI: No. 10.1002/wea.4314.

अन्वेसा भट्टाचार्य, 2022, "भारत में सिम्युलेटेड एयरोसोल ऑप्टिकल गुणों का मूल्यांकनः जमीन और उपग्रह अवलोकन के साथ तीन जीसीएम की COALESCE मॉडल अंतर-तुलना", 852, कुल पर्यावरण का विज्ञान।

इंद्रजीत घोष, सुखेन दास और नबजीत चक्रवर्ती, 2022, "आरएसआरडब्ल्यू डेटा, सीएसपी और चक्रवात ट्रैक भविष्यवाणी", जे. मेक. कॉन्टिनुआ गणित विज्ञान, 17, 2, 41-51.

सुकुमार रॉय और नबजीत चक्रवर्ती, 2022, "पूर्व-कोविड गैर-लॉकडाउन और कोविड लॉकडाउन के बीच मॉडल के प्रदर्शन के तुलनात्मक अध्ययन के लिए मानसून '2019 और 2020 के दौरान कोलकाता और इसके उपनगरों के जिला स्तरीय मौसम पूर्वानुमान का सत्यापन", जर्नल ऑफ मैकेनिक्स ऑफ कॉन्टिन्आ और गणितीय अल विज्ञान, 17, 4, 60-67.

इंद्रजीत घोष, सुखेन दास और नबजीत चक्रवर्ती, 2022, "उष्णकिटबंधीय चक्रवात की उत्पित में विसंगति तापमान", नेट. खतरों, https:// doi.org/1 0.1007/s 11069-022-05434-4.

7.3. आईएमडी मेट. प्रबंध

MoES/IMD/Synoptic Met/01(2022)/26, "**मॉनसून 2021 पर रिपोर्ट**", जलवायु अनुसंधान और सेवाएँ-पुणे।

MoES/IMD/Synoptic Met/02(2022)/27, "**दक्षिण एशिया का उत्तर पूर्व मानसून**" एम. राजीवन एट अल।

एमओईएस/आईएमडी/आरएसएमसी-उष्णकटिबंधीय चक्रवात रिपोर्ट/01 (2022)/12, "2021 के दौरान उत्तर हिंद महासागर पर चक्रवाती गड़बड़ी पर रिपोर्ट", सीडब्ल्यूडी/आरएसएमसी, डिवीजन नई दिल्ली।

MoES/IMD/FDP/तूफान-रिपोर्ट/01(2022)/13 "**2021 के दौरान प्री-मानसून तूफान: एक रिपोर्ट**" NWFC डिवीजन, नई दिल्ली।

एमओईएस/आईएमडी/एफडीपी/हीट-वेव वार्निंग-आईआर-2020/02(2022)/14 "भारत कार्यान्वयन रिपोर्ट-2020 पर हीट वेव चेतावनी में सुधार के लिए पूर्वानुमान प्रदर्शन परियोजना (एफडीपी)" एनडब्ल्यूएफसी डिवीजन, नई दिल्ली।

MoES/IMD/FDP/स्टॉर्म-रिपोर्ट/03(2022)/15 "**2018 के** दौरान प्री-मानस्न त्र्फानः एक रिपोर्ट" NWFC डिवीजन, नई दिल्ली।

एमओईएस/आईएमडी/एफडीपी/तूफान-रिपोर्ट/04(2022)/16 "2020 के दौरान प्री-मानसून तूफान: एक रिपोर्ट" एनडब्ल्यूएफसी डिवीजन, नई दिल्ली।

MoES/IMD/CWD-रिपोर्ट-01(2022)/16 "उत्तर-हिंद महासागर पर उष्णकटिबंधीय चक्रवात पूर्वानुमान कार्यक्रम: कार्यान्वयन रिपोर्ट-2021" चक्रवात चेतावनी प्रभाग, नई दिल्ली।

MoES/IMD/HS/TechnicalReport DSS(2021)/01(2022)/59
"वर्ष 2021 के दौरान परियोजना के लिए डिजाइन तूफान
अध्ययन" हाइड्रोमेट डिवीजन, नई दिल्ली।

MoES/IMD/HS/RainfallReport/02(2022)/60 **"भारत के** वर्षा सांख्यिकी 2021" हाइड्रोमेट डिवीजन, नई दिल्ली।

MoES/IMD/HS/बेसिनहाइड्रोलॉजी/01(2022)/14 "दप-पश्चिम मानसून 2021 के दौरान उप-बेसिन वार मात्रात्मक वर्षा पूर्वानुमान का सत्यापन" हाइड्रोमेट डिवीजन, नई दिल्ली।

MoES/IMD/ASSD/FASALTR-2020/01(2022)/20 "FASAL के तहत फसल उपज का पूर्वानुमान (अंतरिक्ष कृषि मौसम विज्ञान और भूमि आधारित अवलोकनों का उपयोग करके कृषि उत्पादन का पूर्वानुमान" ASSD, नई दिल्ली।

MoES/IMD/ASSD/FR/01(2022)/03 "मौसम और जलवायु सेवाओं के मध्यवर्ती उपयोगकर्ताओं की जानकारी की मांग और उपयोग व्यवहार" ASSD, नई दिल्ली।

MoES/IMD/SATMET/GNSS/01(2022)/11 "**भारतीय GNSS टयुत्पन्न IPWV के मौसम संबंधी अनुप्रयोग**" सेटमेट डिवीजन, नई दिल्ली।

7.4. अन्य प्रकाशन

27 जुलाई, 2022 को माननीय पृथ्वी विज्ञान मंत्री द्वारा एमओईएस स्थापना दिवस पर "भारत में वेधशालाओं की जलवायु तालिकाएँ 1991-2020" जारी की गईं।

चक्रवात चेतावनी प्रभाग, आईएमडी ने सितंबर, 2022 में "टीसीपी-21 (संस्करण 2022)" तैयार किया। इसे विश्व मौसम विज्ञान संगठन (डब्ल्यूएमओ) द्वारा प्रकाशित किया गया था और आरएसएमसी वेबसाइट www.rsmcnewdelhi. imd.gov.in पर भी डाला गया था।

लक्ष्मी एस, डॉ. राजीव चट्टोपाध्याय, डॉ. पुलक गुहाठाकुरता और डॉ. डी. एस. पई द्वारा तैयार की गई "पायथन का उपयोग करके आधुनिक मौसम विज्ञान ग्रिड डेटासेट के विश्लेषण पर एक तकनीकी नोट" शीर्षक वाली रिपोर्ट को सीआरएस रिसर्च रिपोर्ट (नंबर 2022/01) के रूप में प्रकाशित किया गया है।

अनंतिम वार्षिक जलवायु सारांश 2022 सीआरएस, पुणे द्वारा तैयार और डब्लूएमओ को प्रस्तुत किया गया।

अक्टूबर, नवंबर और दिसंबर 2022 के लिए मासिक जलवायु सारांश जारी किया गया, आईएमडी नई दिल्ली में एनडब्ल्यूपी डिवीजन तैयार किया गया।

उन्नत मौसमी जलवायु आउटलुक स्टेटमेंट (एससीओएस) आईएमडी नई दिल्ली में एनडब्ल्यूपी प्रभाग द्वारा तैयार किया गया है।

7.5 पुस्तकं/पुस्तक अध्याय

भान, एस.सी., सिंह, प्रियंका, घोष, कृपाण और सिंह, के.के., 2022. "भारतीय मानसून और मौसम पूर्वानुमान को समझना", कुमार, एस., त्रिपाठी, ए.के. और पैसानिया, डी.आर. और घोष, पी.के. (संस्करण) कृषि विज्ञान में हालिया प्रगति पर एक पाठ्य पुस्तक। कल्याणी प्रकाशक। लुधियाना पीपी: 2.1-2.29.

ओ. पी. श्रीजीत, दिव्यसुरेंद्रन, आरतीबंदगर और डी. एस. पई ने 17 दिसंबर, 2022 को स्प्रिंगर द्वारा प्रकाशित पुस्तक सोशल एंड इकोनॉमिक इम्पैक्ट ऑफ अर्थ साइंसेज में एक अध्याय "दक्षिण-पश्चिम मानसून वर्षा का परिचालन मौसमी पूर्वानुमान" प्रकाशित किया।

सोनी, वी.के., बिस्ट, एस., सिंह, जे., 2022, "अंटार्कटिक ओजोन: बदलती जलवायु में रुझान और परिवर्तनशीलता, अध्याय-1, 1-14, पुस्तक "दक्षिणी उच्च अक्षांश क्षेत्रों की जलवायु परिवर्तनशीलता", ईडी. खरे, एन., सीआरसी प्रेस, ईब्क आईएसबीएन: 97810032037421

अध्याय 8

वित्तीय संसाधन और प्रबंधन प्रक्रिया

8.1. आईएमडी की अनुमोदित योजनाओं का बजट परिव्यय

आईएमडी को अपना बजट आवंटन दो श्रेणियों के तहत प्राप्त होता है, केंद्रीय क्षेत्र की योजनाओं के कार्यान्वयन के लिए बजट और स्थापना संबंधी व्यय के लिए बजट। वित्तीय वर्ष 2022-23 के दौरान बजट अनुमान (बी.ई.)/संशोधित अनुमान (आर.ई.) इस प्रकार हैं:

बजट अनुमान 2022-23 (करोड़ रुपये में)								
	केंद्रीय क्षेत्र की योजनाएँ स्थापना कुल							
BE	216.71	514.03	730.74					
RE	211.40	481.47	692.87					

वायुमंडलीय और जलवायु अनुसंधान - मॉडलिंग अवलोकन प्रणाली और सेवाएँ (एक्रॉस)

पूरे देश में पूर्वानुमान क्षमताओं को उन्नत करने के लिए, पृथ्वी विज्ञान मंत्रालय (एमओईएस) की छत्र योजना "वायुमंडल और जलवायु अनुसंधान-मॉडलिंग अवलोकन प्रणाली और सेवाएं (एक्रॉस)" अर्थात् वायुमंडलीय अवलोकन नेटवर्क के तहत आईएमडी में विभिन्न कार्यक्रम लागू किए जा रहे हैं। एओएन), पूर्वानुमान प्रणाली (यूएफएस), मौसम और जलवायु सेवाओं (डब्ल्यूसीएस) का उन्नयन और पोलारिमेट्रिक डॉपलर मौसम रडार (पीडीडब्ल्यूआर) को चालू करना।

इन चार उप-योजनाओं के तहत 2021-26 के दौरान की जाने वाली मुख्य गतिविधियाँ नीचे सूचीबद्ध हैं:

वायुमंडलीय अवलोकन नेटवर्क (एओएन)

• DWR, AWOS/HAWOS, AWSs/ARGs/SGs, माइक्रोवेव रेडियोमीटर, विंड LiDARs आदि की कमीशनिंग और मौसम विज्ञान केंद्रों की स्थापना/उन्नयन के माध्यम से उत्तर-पूर्व (NE) क्षेत्र के लिए एकीकृत मौसम विज्ञान सेवाएं, जिसका उद्देश्य मौसम और जलवाय् सेवाओं में स्धार करना है।

- डॉपलर मौसम रडार (डीडब्ल्यूआर), स्वचालित वर्षा गेज (एआरजी), स्वचालित मौसम प्रणाली (एडब्ल्यूएस), ऊपरी वायु (आरएस/आरडब्ल्यू और पीबी), सतह, पर्यावरण और धुवीय वेधशालाएं आदि से युक्त अवलोकन नेटवर्क का रखरखाव और संवर्द्धन।
- मल्टी मिशन डेटा रिसेप्शन और प्रोसेसिंग सिस्टम (एमएमडीआरपीएस), पोलर ऑर्बिट डायरेक्ट रिसीविंग सिस्टम आदि सहित सैटेलाइट मौसम संबंधी अनुप्रयोगों के लिए मल्टी प्रोसेसिंग, कंप्यूटिंग और संचार सुविधाओं की स्थापना/उन्नयन और रखरखाव।

पूर्वानुमान प्रणाली (यूएफएस) का उन्नयन

- अवलोकन डेटा और पूर्वानुमान उत्पादों के प्रसारण के लिए संचार प्रणालियों का उन्नयन और रखरखाव।
- एक उन्नत परिचालन पूर्वानुमान प्रणाली का विकास, पूर्वानुमान के लिए वितरण प्रणाली, नाउकास्ट का स्वचालन, थंडरस्टॉर्म अनुसंधान परीक्षण बिस्तर, शहरी मौसम विज्ञान सेवाएं और स्थितीय खगोल विज्ञान सेवाएं।

- जल-मौसम विज्ञान सेवाओं का उन्नयन
- पश्चिमी और मध्य हिमालय के लिए एकीकृत हिमालय मौसम विज्ञान कार्यक्रम (आईएचएमपी)।
- क्षमता निर्माण, आउटरीच, अनुसंधान एवं विकास, प्रकाशन आदि।

मौसम एवं जलवायु सेवाएँ (डब्ल्यूसीएस)

- कृषि मौसम सलाहकार सेवाओं (एएएस) के विस्तार के लिए देश में मौजूदा एएमएफयू के साथ सभी जिलों में जिला कृषि-मौसम इकाइयों (डीएएमयू) की स्थापना।
- संचार के कई माध्यमों, फीडबैक के संग्रह और एएएस के प्रभाव मूल्यांकन के माध्यम से किसानों तक मौसम आधारित कृषि मौसम संबंधी सलाह की पहुंच का विस्तार करना।
- एयरोनॉटिकल एमईटी सेवाओं का समर्थन करने के लिए अत्याधुनिक इंटीग्रेटेड एविएशन वेदर ऑब्जर्विंग सिस्टम (एडब्ल्यूओएस), माइक्रोवेव रेडियोमीटर, डॉपलर एलआईडीएआर, विंड प्रोफाइलर आदि को चालू करके सभी हवाई अड्डों पर मौसम संबंधी सुविधाओं का प्रमुख उन्नयन।
- आईएएफ, भारतीय सेना और सीपीएमएफ के हेलीकॉप्टर और निचले स्तर के उड़ान संचालन और महत्वपूर्ण पर्यटक और तीर्थ स्थानों पर समर्थन के लिए हेलीपोर्ट, लैंडिंग ग्राउंड और अन्य रणनीतिक स्थानों पर स्वचालित हेलीपोर्ट मौसम अवलोकन और संचारण प्रणाली (HAWOS) की स्थापना।
- मरम्मत, सेंसर, स्पेयर, सीएएमसी/एएमसी आदि की खरीद के माध्यम से विमानन मौसम संबंधी उपकरणों और सुविधाओं का रखरखाव और रखरखाव।

- राष्ट्रीय और क्षेत्रीय जलवायु सेवाएं प्रदान करने के लिए एकीकृत उन्नत जलवायु डेटा सेवा पोर्टल के साथ एक अत्याधुनिक जलवायु डेटा केंद्र की स्थापना।
- जलवायु निगरानी, जलवायु पूर्वानुमान, जलवायु डेटा प्रबंधन और जलवायु अनुप्रयोगों की मौजूदा परिचालन गतिविधियों के उन्नयन के माध्यम से देश के लिए बेहतर और विशिष्ट जलवायु सेवाओं का एक व्यापक सेट प्रदान करना।
- क्षेत्र के लिए डब्ल्यूएमओ द्वारा मान्यता प्राप्त क्षेत्रीय जलवायु केंद्र (आरसीसी) के रूप में दक्षिण एशिया में उन्नत जलवायु सेवाएं प्रदान करना।
- प्रशिक्षण प्रतिष्ठान की क्षमता बढ़ाने के लिए प्रशिक्षण बुनियादी ढांचे और सुविधाओं को उन्नत करना। क्षेत्र के लिए WMO द्वारा मान्यता प्राप्त क्षेत्रीय प्रशिक्षण केंद्र (RTC) के रूप में RA-II क्षेत्र के देशों के लिए परिचालन मौसम और जलवायु सेवाओं के क्षेत्र में निर्माण और विकास क्षमता में सहायता करना। विभिन्न प्रशिक्षण पाठ्यक्रमों की मान्यता के लिए विभिन्न विश्वविद्यालयों के साथ समझौता जापन पर हस्ताक्षर करना।
- दक्षिण एशिया में WMO/RIMES/ESCAP/ग्लोबल फ्रेमवर्क फॉर क्लाइमेट सर्विसेज (GFCS) आदि के बीच योगदान।

पोलारिमेट्रिक डॉपलर मौसम रडार (पीडीडब्ल्यूआर) की कमीशनिंग

योजना "पोलारिमेट्रिक डॉपलर मौसम रडार (डीडब्ल्यूआर) को चालू करना" का उद्देश्य ग्यारह सी-बैंड की स्थापना के माध्यम से देश के अधिकांश हिस्सों के लिए रडार के मौसम संबंधी अवलोकन नेटवर्क में मौजूदा अंतराल को पाटने की सुविधा के लिए देश भर में डीडब्ल्यूआर नेटवर्क को बढ़ाना है। दोहरे ध्वीकृत डीडब्ल्यूआर।

8.2. वर्ष 2022 के दौरान उत्पन्न राजस्व

मौसम संबंधी डेटा की बिक्री

RCs/MCs	Total revenue received by sale of meteorological data during the month (Amount in Rupees)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
DGM, New Delhi												
DGM SATMET	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
DGM HYDROLOGY	326672	165248	675113	NIL	582627	NIL	425820	564022	NIL	NIL	348449	NIL
DGM (Publication)	24550	67206	45800	11225	8225	8225	16675	4000	8225	2200	24000	NIL
RMC, New Delhi												
New Delhi	30134	30874	46862	26552	75035	78490	10457	13283	8575	66757	29539	2656
Jaipur	NIL	2596	26865	NIL	31806	29964	34535	32284	28708	12323	6027	13100
Lucknow	63872	13851	7316	17408	7627	9147	18749	11255	32697	9230	17525	6702
Srinagar	16499	26529	11758	2655	NIL	54165	5015	NIL	20060	29696	8875	7375
Chandigarh	2714	10101	21592	5711	11769	19291	14922	24518	22503	15525	10968	11362
Shimla	12278	NIL	6416	3102	5074	8674	5074	12055	14592	9908	10644	3321
Dehradun	35576	6666	3717	NIL	6367	2537	NIL	7434	4897	NIL	30038	NIL
					RMC, Mu	mbai						
Mumbai	37147	36168	25177	23376	23653	23094	42943	2706	12351	43792	25367	7658
					RMC, Na	gpur						
Nagpur	50170	2823	34388	NIL	13320	13802	21830	39648	40608	7198	41798	7316
Bhopal	2737	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
					RMC, Ko	lkata						
RMC Kolkata	NIL	NIL	NIL	NIL	7931	NIL	3995	5811	16539	NIL	114728	160933
PAC Kolkata	NIL	NIL	NIL	NIL	NIL	NIL	NIL	13158	13071	NIL	17071	6904
Patna	NIL	NIL	11807	4446	NIL	NIL	NIL	NIL	17354	43626	NIL	4140
Bhubaneswar	NIL	NIL	NIL	6845	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
Gangtok	NIL	NIL	NIL	2926	NIL	NIL	NIL	32888	9974	22875	56524	159728
Ranchi	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	24490	3417	5049	25314
				F	RMC, Guw	/ahati						
Guwahati	32204	35153	38066	111321	29999	125172	150767	216080	61976	36044	59503	24970
Agartala	19094	12977	NIL	4620	8849	6564	1782	17443	NIL	3564	NIL	11428
					RMC, Che	ennai					l .	
Chennai	131591	114275	69893	65196	47507	30302	48458	56473	142898	83325	97644	34009
Thiruvananthapuram	7080	28320	22713	13339	154971	18352	3540	42480	10620	15930	26502	3540
Hyderabad	13689	48944	13050	11333	37866	42066	22555	17054	14139	9857	39691	15042
Bangalore	110229	102722	105876	129426	119276	218991	120931	115705	198627	244819	681918	123237
ACWC Chennai	NIL	NIL	7080	NIL	7080	NIL	NIL	28320	NIL	7080	NIL	NIL
CWC Visakhapatnam	NIL	NIL	NIL	NIL	4962	33971	NIL	5226	4961	1300	NIL	7201
	L				CRS, Pu	ine				l .		
Pune	970278 US \$1534	261553	169727 US \$360	171537 US \$374	81653	504098 US	1101976	695151	417471	710313	339512 US \$337	314640
						\$5417						

CHAPTER 9

राजभाषा नीति का कार्यांवयन

संसदीय राजभाषा समिति द्वारा निरीक्षण

माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 12.02.2022 को मौसम केंद्र पटना का पटना में राजभाषायी निरीक्षण किया गया। इस निरीक्षण कार्यक्रम में मुख्यालय से डॉ के.के. सिंह, वैज्ञानिक 'जी' तथा श्रीमती सिरता जोशी उपनिदेशक (राजभाषा) ने भाग लिया। प्रादेशिक मौसम केंद्र, कोलकाता से डॉ सजीब बंदोपाध्याय, वैज्ञानिक 'एफ' तथा मौसम केंद्र, पटना से श्री विवेक सिन्हा, वैज्ञानिक 'एफ' उपस्थित रहे।

माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 07.03.2022 को मौसम केंद्र अगरतला का निरीक्षण किया गया। इस निरीक्षण में मंत्रालय की श्रीमती इंदिरा मूर्ति, संयुक्त सचिव, श्री मनोज आबूसरिया, संयुक्त निदेशक (रा.भा.) और मुख्यालय से डॉ. शिवदेव अत्री-वैज्ञानिक 'जी', श्रीमती सरिता जोशी, उप निदेशक (रा.भा.) ने भाग लिया। प्रादेशिक मौसम केंद्र, गुवाहाटी से डॉ. के. एन. मोहन, वैज्ञानिक 'जी' तथा मौसम केंद्र, अगरतला से श्री नहुष कुलकर्णी, वैज्ञानिक 'सी' उपस्थित रहे। निरीक्षण सफल एवं संतोषजनक रहा।

संसदीय राजभाषा समिति द्वारा मौसम केंद्र- अगरतला का निरीक्षण

माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 29.04.2022 को मौसम केंद्र, चंडीगढ का निरीक्षण किया गया। इस निरीक्षण में मंत्रालय की तरफ से श्रीमती इंदिरा मूर्ति, संयुक्तफ सचिव और श्री मनोज आबूसिरया- संयुक्तण निदेशक (रा.भा.) तथा मुख्यामलय की तरफ से डॉ. शिव देव अत्री, वैज्ञानिक 'जी' और श्रीमती सिरता जोशी-उप निदेशक (रा.भा.) ने भाग लिया। प्रादेशिक मौसम केंद्र, नई दिल्ली से श्री चरण सिंह, वैज्ञानिक 'एफ' और मौसम केंद्र, चंडीगढ़ से डॉ. मनमोहन सिंह, वैज्ञानिक 'एफ'उपस्थिसत रहे। निरीक्षण सफल एवं संतोषजनक रहा।

संसदीय राजभाषा समिति द्वारा मौसम केंद्र - चंडीगढ का निरीक्षण

संसदीय राजभाषा समिति की दूसरी उपसमिति द्वाराहाइड्रोजन फैक्ट्री आगरा का निरीक्षण

माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 04.05.2022 को हाइड्रोजन फैक्ट्री आगरा का निरीक्षण किया गया। इस निरीक्षण में मंत्रालय से श्रीमती इंदिरा मूर्ति, संयुक्त सचिव और श्री मनोज आबूसरिया, संयुक्त ि निदेशक (रा.भा) और मुख्या0लय से डॉ. के. के. सिंह, वैज्ञानिक 'जी' और श्रीमती सरिता जोशी, उपनिदेशक (रा.भा.) ने भाग लिया। हाइड्रोजन फैक्ट्री, आगरा के प्रमुख श्री पप्पूय सिंह, मौसम विज्ञानी 'ए' उपस्थित रहे। निरीक्षण सफल एवं संतोषजनक रहा।

माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 26.08.2022 को मौसम केंद्र, बेंगलुरू तथा हवाई अड्डा मौसम स्टेरशन, कोयंबटूर का निरीक्षण किया गया। इस निरीक्षण में मुख्यालय की तरफ से महानिदेशक डॉ. मृत्युंजय महापात्र तथा उपनिदेशक (राजभाषा) श्रीमती सरिता जोशी ने भाग लिया। प्रोदिशक मौसम केंद्र, चेन्नै से डॉ. एस. बालचंद्रन, वैज्ञानिक 'एफ', मौसम केंद्र-बेंगलुरू की प्रमुख डॉ. गीता अग्निहोत्री, वैज्ञानिक 'एफ' तथा हवाई अड्डा मौसम स्टेशन कोयम्बटूर के प्रमुख श्री के. आर. दास, मौसम विज्ञानी 'बी' उपस्थित रहे। दोनों कार्यालयों का निरीक्षण सफल रहा।

माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 26.09.2022 को मौसम केंद्र, तिरूवनंतपुरम का निरीक्षण किया गया। इस निरीक्षण में मुख्यालय की ओर से डॉ. के. के. सिंह, वैज्ञानिक 'जी' तथा श्रीमती सरिता जोशी, उपनिदेशक (राजभाषा) ने भाग लिया। प्रोदशिक मौसम केंद्र, चेन्नै से डॉ. एस. बालचंद्रन, वैज्ञानिक 'एफ' तथा मौसम केंद्र, तिरूवनंतपुरम के प्रमुख डॉ. के. संतोष, वैज्ञानिक 'एफ' उपस्थित रहे।

माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 14.11.2022 को मौसम केंद्र, रायपुर का निरीक्षण किया गया। निरीक्षण में मुख्यालय से महानिदेशक महोदय डॉ. मृत्युंजय महापात्र और उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी ने भाग लिया। यह निरीक्षण सफल रहा। माननीय संसदीय राजभाषा समिति की दूसरी उपसमिति द्वारा दिनांक 16.11.2022 को प्रादेशिक मौसम केंद्र, कोलकाता का निरीक्षण किया गया। निरीक्षण में मुख्यालय से डॉ. के. के. सिंह, वैज्ञानिक 'जी' और उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी ने भाग लिया। यह निरीक्षण सफल रहा।

राजभाषायी ई-निरीक्षण

दिनांक 11.01.2022 को प्रादेशिक मौसम केंद्र, नागपुर द्वारा मौसम कार्यालय, अकोला, मौसम कार्यालय, इंदौर तथा मौसम कार्यालय, सागर का ई निरीक्षण किया गया जिसमें सहायक निदेशक (रा.भा.) श्रीमती सरिता जोशी उपस्थित रहीं और आवश्याक दिशा निर्देश दिए।

दिनांक 12.01.2022 को मौसम केंद्र, चंडीगढ़, मौसम केंद्र, लखनऊ तथा खगोल विज्ञान केंद्र, कोलकाता का राजभाषायी ई निरीक्षण श्रीमती सरिता जोशी, सहायक निदेशक (रा.भा.) द्वारा किया गया जिसमें पृथ्वी विज्ञान मंत्रालय के संयुक्त निदेशक (रा.भा.) श्री मनोज आबूसरिया भी उपस्थित रहे।

दिनांक 18.02.2022 को मौसम केंद्र, शिमला, मौसम केंद्र, देहरादून, मौसम केंद्र,श्रीनगर और मौसम केंद्र, लेह का राजभाषायी ई-निरीक्षण उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी द्वारा किया गया व आवश्य-क दिशानिर्देश दिए गए। निरीक्षण में डॉ. के. के. सिंह, वैज्ञानिक 'जी' तथा श्री मनोज आबूसरिया, संयुक्तग निदेशक (रा.भा.) पृथ्वी विज्ञान मंत्रालय भी शामिल रहे।

दिनांक 21.2.2022 को प्रादेशिक मौसम केंद्र, नागपुर द्वारा मौसम कार्यालय, बिलासपुर और मौसम कार्यालय, अम्बितकापुर का राजभाषायी ई निरीक्षण किया गया जिसमें उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी उपस्थितत रहीं और आवश्ययक दिशा निर्देश दिए।

दिनांक 21.04.2022 को प्रादेशिक मौसम केंद्र, चेन्नै, मौसम केंद्र, हैदराबाद तथा मौसम केंद्र-तिरूवनतंपुरम का राजभाषायी ई-निरीक्षण श्रीमती सरिता जोशी, उप निदेशक (रा.भा.) द्वारा किया गया जिसमें पृथ्वी विज्ञान मंत्रालय से श्री मनोज आबूसरिया, संयुक्त निदेशक (रा.भा.) तथा मुख्यालय से डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' भी शामिल रहे।

प्रादेशिक मौसम केंद्र, चेन्नै, मौसम केंद्र, हैदराबाद तथा मौसम केंद्र, तिरूवनतंपुरम का राजभाषायी ई-निरीक्षण

दिनांक 31.05.2022 को खगोल विज्ञान केंद्र-कोलकाता, मौसम केंद्र-बेंगलुरू और मौसम केंद्र, अमरावती का श्रीमती सरिता जोशी, उपनिदेशक (रा.भा.) द्वारा राजभाषायी ई निरीक्षण किया गया जिसमें पृथ्वी विज्ञान मंत्रालय से श्री मनोजआबूसरिया, संयुक्त निदेशक (रा.भा.) तथा मुख्यालय से श्रीमती रंजू मदान उपमहानिदेशक (प्रशा.) भी शामिल रहे।

खगोल विज्ञान केंद्र-कोलकाता, मौसम केंद्र, बेंगलुरू और मौसम केंद्र, अमरावती काराजभाषायी ई - निरीक्षण

दिनांक 08.06.2022 को प्रादेशिक मौसम केंद्र, नई दिल्ली द्वारा मौसम कार्यालय एवं पवन सूचक गुब्बारा वेधशाला, कोटा और दिनांक 15.06.2022 को मौसम रेडार स्टेशन एवं पवन सूचक गुब्बारा वेधशाला, जैसलमेर, मौसम रेडार स्टेशन, श्रीगंगानगर और पवन सूचक गुब्बारा वेधशाला, चुरू का राजभाषायी ई-निरीक्षण किया गया जिसमें उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी उपस्थित रहीं और आवश्यक दिशा निर्देश दिए।

प्रादेशिक मौसम केंद्र, नई दिल्ली द्वाराराजभाषायी ई-निरीक्षण

दिनांक 06.06.2022 को प्रादेशिक मौसम केंद्र, कोलकाता द्वारा मौसम कार्यालय, पुरी, विमानन मौसम कार्यालय, आसनसोल और विमानन मौसम कार्यालय, जलपाईगुडी का राजभाषायी ई-निरीक्षण किया गया जिसमें उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी उपस्थिवत रहीं और आवश्याक दिशा निर्देश दिए।

दिनांक 28.06.2022 को प्रादेशिक मौसम केंद्र, नागपुर द्वारा मौसम कार्यालय, ग्वालियर, मौसम कार्यालय, जबलपुर और मौसम कार्यालय, जगदलपुर का राजभाषायी ई- निरीक्षण किया गया जिसमें उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी उपस्थित रहीं और आवश्यक दिशा निर्देश दिए।

प्रादेशिक मौसम केंद्र, नागप्र द्वाराराजभाषायी ई-निरीक्षण

दिनांक 28.07.2022 को प्रादेशिक मौसम केंद्र, मुंबई, मौसम केंद्र, गोवा, मौसम केंद्र, श्रीनगर और मौसम केंद्र, शिमला का श्रीमती सरिता जोशी, उपनिदेशक (रा.भा.) द्वारा राजभाषायी ई-निरीक्षण किया गया जिसमें पृथ्वी विज्ञान मंत्रालय के श्री मनोज आबूसरिया, संयुक्त निदेशक (रा.भा.) शामिल रहे।

दिनांक 15.11.2022 को मौसम केंद्र, रायपुर, दिनांक 17.11.2022 को मौसम कार्यालय, कोलकाता और खगोल विज्ञान केंद्र, कोलकाता तथा दिनांक 18.11.2022 को प्रादेशिक मौसम केंद्र, कोलकाता का राजभाषायी निरीक्षण उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी दवारा किया गया।

हिंदी दिवस समारोह

मुख्यालय में हिंदी दिवस समारोह 2022 का दिनांक 29.09.2022 को सफल आयोजन किया गया। हिंदी दिवस समारोह की अध्यदक्षता डॉ. मृत्युंजय महापात्र, महानिदेशक महोदय ने की तथा इस समारोह की मुख्य अतिथि श्रीमती प्रमिला भारती, सुप्रसिद्ध गीत गज़लकार व साहित्यकार रही।

मुख्यालय में हिंदी दिवस/हिंदी पखवाड़ा 2022 के दौरान आयोजित की गई 6 प्रतियोगिताओं के 30 विजेताओं को महानिदेशक महोदय डॉ. मृत्युंजय महापात्र एवं मुख्य अतिथि श्रीमती प्रमिला भारती तथा हिंदी दिवस समारोह समिति के अध्यक्ष डॉ. के. के. सिंह, वैज्ञानिक 'जी' के हाथों से पुरस्कार एवं प्रमाण पत्र प्रदान किए गए।

मुख्यालय में हिंदी दिवस/हिंदी पखवाड़ा 2022 के दौरान आयोजित की गई प्रतियोगिताएँ

मुख्यालय के हिंदी दिवस/पखवाड़ा 2022 के समापन समारोह में सरकारी कामकाज मूलरूप से हिंदी में करने की प्रोत्सांहन योजना 2021-2022 के मुख्यालय तथा प्रादेशिक मौसम केंद्र, नई दिल्ली के विजेताओं को महानिदेशक महोदय, मुख्य अतिथि विजेताओं को महानिदेशक महोदय, मुख्य अतिथि तथा समारोह समिति के अध्यक्ष दवारा प्रमाण पत्र प्रदान किए गए।

हिंदी दिवस/पखवाड़ा 2022

हिंदी दिवस समारोह 29.09.2022 के अवसर पर राजभाषा हिंदी में सर्वश्रेष्ठ कार्य करने हेतु वर्ष 2021-2022 के लिए राजभाषा चलशील्ड सूचना का अधिकार प्रकोष्ठ को प्रदान की गई।

राजभाषा हिंदी में सर्वश्रेष्ठ कार्य करने हेतु वर्ष 2021-2022 के लिए राजभाषा चलशील्ड

प्रकाशन

'मौसम मंजूषा' के 34^च संस्करण का विमोचन विभाग के स्थापना दिवस के अवसर पर दिनांक 14.01.2022 को माननीय मंत्री महोदय डॉ. जितेन्द्र सिंह जी द्वारा किया गया। पत्रिका की प्रतियाँ मुख्यालय के अनुभागों, राजभाषा कार्यान्वनसमिति कोसदस्यों / उपकार्यालयों को वितरित की गई।

'मौसम मंज्रा' के 34^{वें} संस्करण का विमोचन

विभागीय हिंदी गृह पत्रिका 'मौसम मंजूषा' का 34^{वां} संस्करण राजभाषा विभाग, गृह मंत्रालय की वेबसाइट में 'ई-पत्रिका पुस्तकालय' के अंतर्गत अपलोड किया गया।

माननीय महानिदेशक महोदय डॉ. मृत्युंजय महापात्र जी द्वारा विभागीय गृह पत्रिका 'मौसम मंजूषा' के 35^{वें} संस्करण का विमोचन हिंदी दिवस/हिंदी पखवाड़ा 2022 के अवसर पर दिनांक 29.09.2022 को किया गया।

माननीय महानिदेशक महोदय डॉ. मृत्युंजय महापात्र जी द्वारा 'मौसम मंजूषा' के 35^{वें} संस्करण का विमोचन

कार्यशाला/व्याख्यान

मुख्यालय द्वारा दिनांक 25.03.22 को ई-हिंदी कार्यशाला का आयोजन किया गया जिसमें दिल्ली सहित विभिन्न कार्यालयों के लगभग 124 कार्मिकों ने भाग लिया। ई-हिंदी कार्यशाला का शुभारंभ महानिदेशक महोदय डॉ मृत्युंजय महापात्र के संबोधन से हुआ। इस कार्यशाला में पृथ्वी विज्ञान मंत्रालय के संयुक्त निदेशक (राजभाषा) श्री मनोज आब्सरिया, सेवानिवृत्तप उप निदेशक (रा.भा.) सुश्री रेवा शर्मा, श्रीमती सरिता जोशी, उप निदेशक (राजभाषा) एवं वरिष्ठ अनुवाद अधिकारी श्री बीरेन्द्र कुमार ने व्याख्यान दिए।

ई-हिंदी कार्यशाला

मौसम केंद्र, जयपुर द्वारा दिनांक 28.06.2022 को आयोजित हिंदी कार्यशाला में श्रीमती सरिता जोशी उपनिदेशक (रा.भा.) ने स्वागत भाषण दिया।

मौसम केंद्र- जयप्र द्वारा आयोजित हिंदी कार्यशाला

भारत मौसम विज्ञान विभाग के 'सहायक' पद के कार्मिकों के प्रशिक्षण कार्यक्रम में श्रीमती सरिता जोशी,

उपनिदेशक ने 'राजभाषा हिंदी' पर व्याख्यान दिया। उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी ने दिनांक 25.11.2022 को बेसिक/ मॉड्लर प्रशिक्षण पाठ्यक्रम के प्रशिक्षार्थियों को 'राजभाषा हिंदी- आवश्यक जानकारियाँ' विषय पर व्याख्यान दिया।

मुख्यालय द्वारा दिनांक 15.12.2022 को ई-हिंदी कार्यशाला का आयोजन किया गया जिसमें दिल्ली सहित विभिन्न कार्यालयों के लगभग 200 कार्मिकों ने भाग लिया। ई-हिंदी कार्यशाला का शुभारंभ महानिदेशक महोदय डॉ मृत्युंजय महापात्र के संबोधन से हुआ। इस कार्यशाला में सेवानिवृत्त उप निदेशक (रा.भा.) सुश्री रेवा शर्मा, श्रीमती सरिता जोशी, उप निदेशक (राजभाषा) एवं वरिष्ठ अनुवाद अधिकारी श्री बीरेन्द्र कुमार ने व्याख्यान दिए।

बैठकें

मुख्यालय की राजभाषा कार्यान्वयन समिति की वर्ष 2022 की पहली तिमाही बैठक (158वीं तिमाही बैठक) महानिदेशक महोदय की अनुमित से डॉ. शिवदेव अत्री वैज्ञानिक 'जी' की अध्यक्षता में दिनांक 30.03.2022 को वर्चुअल माध्यम से आयोजित की गई। इस बैठक में पृथ्वी विज्ञान मंत्रालय के संयुक्त निदेशक (राजभाषा) श्री मनोज आबूसिरया, मुख्यालय के अधिकारी तथा उपकार्यालयों के प्रमुख/ प्रतिनिधि वर्चुअल माध्यम से उपस्थित रहे। अंत में महानिदेशक महोदय ने भी आवश्यक दिशानिर्देश दिए।

मुख्यालय की राजभाषा कार्यान्वयन समिति की वर्ष 2022 की 158^{वी} तिमाही बैठक

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' की अध्यक्षता में विभाग की प्स्तकालय समिति की दिनांक 25.03.2022 को आयोजित 119^{वी} बैठक में श्रीमती सिरता जोशी, उपनिदेशक (राजभाषा) ने सदस्याँ के रूप में भाग लिया। विज्ञान और प्रौद्योगिकी मंत्रालय तथा पृथ्वी विज्ञान मंत्रालय की संयुक्त हिंदी सलाहकार सिमित की दिनांक 06.06.2022 को आयोजित की जाने वाली 31^{वी} बैठक के लिए पिछली बैठक (30वीं) के कार्यवृत्ति पर की गई कार्रवाई की रिपोर्ट, 31 मार्च 2022 की तिमाही प्रगति रिपोर्ट, राजभाषा नीति के कार्यान्वयन संबंधी संवैधानिक प्रावधानों के अनुपालन की स्थित (31 दिसंबर, 2021 की तिमाही और 31 मार्च, 2022 की तिमाही रिपोर्ट के अनुसार) तथा हिंदी पखवाड़े के आयोजन संबंधी रिपोर्ट विज्ञान और प्रौद्योगिकी मंत्रालय और पृथ्वी विज्ञान मंत्रालय को भेजी गई।

पृथ्वी विज्ञान मंत्रालय तथा विज्ञान और प्रौद्योगिकी मंत्रालय की संयुक्त हिंदी सलाहकार समिति की 31^{वी} बैठक का आयोजन माननीय मंत्री महोदय की अध्यक्षता में दिनांक 6.06.2022 को पृथ्वी विज्ञान मंत्रालय में किया गया। इस बैठक में डॉ मृत्युंजय महापात्र, महानिदेशक महोदय ने सदस्य के रूप में भाग लिया। महानिदेशक महोदय द्वारा माननीय मंत्री महोदय तथा समिति के सभी सदस्यों का शॉल पहनाकर स्वागत किया गया। मुख्यालय से उपनिदेशक (रा.भा.), श्रीमती सरिता जोशी, वरिष्ठ अनुवाद अधिकारी तथा कनिष्ठ अनुवाद अधिकारी तथा कनिष्ठ अनुवाद अधिकारी तथा कनिष्ठ

महानिदेशक महोदय द्वारा माननीय मंत्री महोदय तथा समिति के सभी सदस्यों का शॉल पहनाकर स्वागत किया गया

मुख्यालय की राजभाषा कार्यान्वयन समिति की वर्ष 2022 की दूसरी तिमाही बैठक (158वीं तिमाही बैठक) महानिदेशक महोदय की अनुमित से डॉ. शिवदेव अत्री वैज्ञानिक 'जी' की अध्यक्षता में दिनांक 29.06.2022 को वर्चुअल माध्यम से आयोजित की गई। इस बैठक में मुख्यालय के अधिकारी तथा उपकार्यालयों के प्रमुख/प्रतिनिधि वर्चुअल माध्यम से उपस्थित रहे।

पृथ्वी विज्ञान मंत्रालय द्वारा दिनांक 29.06.2022 को श्रीमती इंदिरा मूर्ति-संयुक्त सचिव महोदया की अध्यक्षता में आयोजित राजभाषा कार्यान्वयन समिति की बैठक में डॉ. एस. डी. अत्री वैज्ञानिक 'जी' / कार्यकारी महानिदेशक तथा श्रीमती सरिता जोशी, उपनिदेशक (रा.भा.) ने भारत मौसम विज्ञान विभाग का प्रतिनिधित्व किया।

श्रीमती इंदिरा मूर्ति-संयुक्त सचिव महोदया की अध्यक्षता में आयोजित राजभाषा कार्यान्वयन समिति की बैठक

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' की अध्यक्षता में पुस्तकालय सलाहकार समिति की दिनांक 20.07.2022 आयोजित 120^{वीं} बैठक में श्रीमती सरिता जोशी, उपनिदेशक (रा.भा.) ने सदस्य के रूप में भाग लिया।

भारत मौसम विज्ञान विभाग के 148[†] स्थापना दिवस के आयोजन से संबंधित विर्द्यार्थियों हेतु प्रतियोगिताएँ आयोजित करने से संबंधित उपसमिति में सदस्य के रूप में उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी को नामित किया गया। महानिदेशक महोदय की अध्यक्षता में दिनांक 22.11.2022 को हुई संबंधित बैठक में उपनिदेशक (रा.भा.) ने भाग लिया।

विज्ञान और प्रौद्योगिकी मंत्रालय तथा पृथ्वी विज्ञान मंत्रालय की संयुक्त हिंदी सलाहकार समिति की 32^{वी} बैठक का आयोजन दिनांक 26.12.2022 को माननीय मंत्री डॉ. जितेन्द्र सिंह, विज्ञान और प्रौद्योगिकी मंत्रालय तथा पृथ्वी विज्ञान मंत्रालय की अध्यक्षता में पृथ्वी भवन के अर्णव हॉल लोदी रोड, नई दिल्ली में संपन्न हुआ। इस बैठक में कार्यभारी महानिदेशक डॉ. शिवदेव अत्री वैज्ञानिक 'जी' तथा उपनिदेशक (रा.भा.) श्रीमती सरिता जोशी ने भाग लिया।

अध्याय 10

01.01.2022 को अनु.जा./अनु.ज.जा./अ.पि.वर्ग की स्थिति

(i) 01.01.2022 तक एससी/एसटी/ओबीसी की स्थिति (समूहवार)

	Representa	SCs / STs/ .2022	Appointments by Promotion during the calendar year				
Groups	No. of SCs STs OBCs Employees			SCs	STs	Total	
Group A	204	30	13	55	0	1	16
Group B (Gaz.)	892	182	109	89	166	34	1082
Group B (Non- Gaz.)	1819	284	137	650	NA	NA	NA
Group C	1157	342	121	189	NA	NA	NA
TOTAL	1096	212	122	144	166	35	1098

(ii) 01.01.2022 तक एससी/एसटी/ओबीसी की स्थिति (वेतनमान के अनुसार)

	Representation of SCs / STs / OBCs as on 01.01.2022				Appointments by promotion during the calendar year			
Pay Scale in Rs.	No. of Employees	SCs	STs	OBCs	SCs	STs	Total	
PB-3 + GP 5400	1	0	0	0	0	0	0	
PB-3 + GP 6600	81	10	5	26	0	0	1	
PB-3 + GP 7600	17	1	1	6	0	0	0	
PB-4 + GP 8700	59	11	5	19	0	0	2	
PB-4 + GP 8900	40	8	2	4	0	1	3	
PB-4 + GP 10000	5	0	0	0	0	0	10	
75500-80000	1	0	0	0	0	0	0	
TOTAL	204	30	13	55	0	1	16	

अध्याय 11

विविध

11.1. सम्मान और पुरस्कार

आईएमडी पुरस्कार

भारत मौसम विज्ञान विभाग (आईएमडी) ने 14 जनवरी, 2022 को 147वें आईएमडी स्थापना दिवस पर वर्ष 2021-22 के लिए निम्नलिखित प्रस्कार प्रदान किए:

सर्वश्रेष्ठ एमसी : एमसी, जयपुर

सर्वश्रेष्ठ : एएमओ, इंदौर

एमडब्ल्यूओ/एएमओ/एएमएस

सर्वश्रेष्ठ एमओ : बिलासपुर

सर्वश्रेष्ठ डीडब्ल्यूआर : डीडब्ल्यूआर, गोवा

राजभाषा शील्ड : पीएसी, कोलकाता

सर्वश्रेष्ठ कर्मचारी प्रस्कार

सर्वश्रेष्ठ समूह 'ए' अधिकारी - (i) डॉ. वी. पी. सिंह, वैज्ञानिक। 'सी', एम.सी. भोपाल

सर्वश्रेष्ठ ग्रुप 'बी' अधिकारी - (i) श्री एस.के. शर्मा, मेट। 'ए', डीजीएम कार्यालय, नई दिल्ली, (ii) श्री पी.एस. चिंचोले, मेट। 'ए', आरएमसी नागपुर, (iii) श्री गगन दीप, ए.ओ. ॥, डीजीएम कार्यालय, नई दिल्ली, (iv) श्री गगन दीप, ए.ओ. ॥, डीजीएम कार्यालय, नई दिल्ली, (v) श्री संजय दामोदर रास्कर, एस.ए., सीआरएस पुणे, (vi) सुश्री आर.वी. दीपा, एस.ए., आरएमसी चेन्नई (vii) श्री अन्ज सिन्हा, सहायक, आरएमसी मुंबई

सर्वश्रेष्ठ समूह 'सी' अधिकारी: (i) श्री तापस हाजरा, यूडीसी, आरएमसी कोलकाता, (ii) श्री के. वाई. पोटकुले, एमटीएस, आरएमसी मुंबई पीएसी कोलकाता को वर्ष 2021 के दौरान राजभाषा नीति के कार्यान्वयन में उत्कृष्ट प्रदर्शन के लिए 147^{वें} भारत मौसम विज्ञान विभाग स्थापना दिवस 14 जनवरी, 2022 के अवसर पर डीजीएम, नई दिल्ली द्वारा 'राजभाषा शील्ड ट्रॉफी' 2021 और 'मेरिट प्रमाणपत्र' से सम्मानित किया गया है।

सराहना मिली

निम्नलिखित अधिकारियों को वर्ष 2021 के लिए उनके अनुसंधान योगदान के लिए प्रशंसा पत्र प्राप्त हुआ।

क्र.सं.	नाम	पद का नाम	पर पोस्ट किया गया
1.	श्री रिज़वान अहमद	मौसम विज्ञानी 'ए'	आईएमडी, नई दिल्ली
2.	श्री राजा आचार्य	मौसम विज्ञानी 'ए'	आरएमसी, कोलकाता
3.	सुश्री कविता नावरिया	वैज्ञानिक सहायक	आईएमडी, नई दिल्ली
4.	श्री विक्रम पाराशर	मौसम विज्ञानी 'ए'	आईएमडी, नई दिल्ली
5.	श्री आशीष त्यागी	वैज्ञानिक सहायक	आईएमडी, नई दिल्ली
6.	श्री अतुल कुमार वर्मा	वैज्ञानिक सहायक	आईएमडी, नई दिल्ली
7.	श्री पी. पी. बाब्राज	वैज्ञानिक सहायक	आरएमसी, चेन्नई
8.	श्री समुद्रला वेंकट जगन्नाध कुमार	मौसम विज्ञानी 'ए'	सीडब्ल्यूसी, विशाखापत्तनम
9.	श्री अरुण शर्मा	मौसम विज्ञानी 'ए'	आईएमडी, नई दिल्ली

केंद्रीय सिविल सेवा सांस्कृतिक एवं खेल बोर्ड (सीसीएससीएसबी) (डीओपीटी) द्वारा आयोजित अंतर मंत्रालय टूर्नामेंट 2021-22 में भारत मौसम विज्ञान विभाग का प्रदर्शन।

क्र.सं.	आयोजन का नाम	विजेताओं के नाम	पद प्राप्त हुआ
1.	पावर लिफ्टिंग (सर्वोत्तम शारीरिक संरचना)	श्री रोहित वशिष्ट	सिल्वर
2.	एथलेटिक्स (10000 मीटर दौड़)	समुन्द्रा सिंह	सिल्वर
3.	कैरम	श्री सैयद मोहम्मद अली	ब्रोंज
4.	बैडमिंटन (डबल्स)	श्री प्रवीण घिल्डियाल श्री अनूप कंडारी	ब्रोंज
5.	बैडमिंटन अनुभवी (एकल)	सुश्री रेनू वर्मा	ब्रोंज
6.	बैडमिंटन अनुभवी (डबल्स)	सुश्री रेनू वर्मा सुश्री सुनीता रानी	ब्रोंज
7.	समूह लोक नृत्य	सुश्री रिदम नासवा सुश्री शिवाली सुश्री देवराक्षंजिल श्रीवास्तव सुश्री शिखा वर्मा सुश्री दिव्या कुमारी सुश्री रश्मी कुमारी सुश्री लक्ष्मी पाठक सुश्री ट्विंकल ग्रोवर	ब्रोंज
8.	अखिल भारतीय शतरंज टूर्नामेंट 2021-22	सुश्री कोमल श्रीवास्तव	महिला टीम शतरंज स्पर्धा में 5 ^{वें} बोर्ड में प्रथम पुरस्कार
9.	आज़ादी का अमृत महोत्सव	बैडमिंटन रजत (महिला एकल) सुश्री मालिनी ठाकुर बास्केटबाल Ms. Rhythm Naswa बैडमिंटन (महिला डबल) सुश्री रिदम नासवा और सुश्री	सिल्वर सिल्वर ब्रोंज

श्री प्रवीण के. घिल्डियाल, मेट-ए ने इंटर मिनिस्ट्रियल बैडमिंटन टूर्नामेंट-2021-22 में भाग लिया और पुरुष युगल स्पर्धा में कांस्य पदक जीता।

श्री प्रवीण के. घिल्डियाल, मेट-'ए' ने कांस्य पदक जीता

डॉ. एम. महापात्र, महानिदेशक, आईएमडी विजेताओं और आईएमडी मनोरंजन क्लब, दिल्ली कार्यकारी निकाय के साथ

आईएमडी और एमओईएस कर्मी के उद्घाटन पर 22 फरवरी, 2022 को 'विज्ञान सर्वत्र पूजयते'

डॉ. मृत्युंजय महापात्र, महानिदेशक, आईएमडी को चक्रवात चेतावनी सेवाओं में आदर्श बदलाव लाने और स्वैच्छिक सेवा संगठन- श्री श्रीक्षेत्र सूचना, पुरी द्वारा 20^{वें} लोक मेले और 13^{वें} कृषि के दौरान समाज में उनके सराहनीय योगदान के लिए "श्रीक्षेत्र सम्मान - 2022" से सम्मानित किया गया। मेला-2022 पुरी, ओडिशा में।

श्रीक्षेत्र सम्मान-2022

आईएमडी के महानिदेशक को श्रीक्षेत्र सम्मान-2022 प्रदान किया गया

डब्ल्यूसीडीएम-डीआरआर प्रस्कार

भारत मौसम विज्ञान विभाग को 22 जून, 2022 को चक्रवातों और चरम मौसम की घटनाओं के लिए मौसम पूर्वानुमान और प्रारंभिक चेतावनी सेवाओं में उत्कृष्ट योगदान के लिए "विश्व कांग्रेस आपदा प्रबंधन- आपदा जोखिम न्यूनीकरण पुरस्कार" से सम्मानित किया गया। डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' को यह पुरस्कार मिला।

डॉ. एस. डी. अत्री पुरस्कार प्राप्त करते हुए

पृथ्वी विज्ञान मंत्रालय ने श्री एस. सी. भान, वैज्ञानिक 'एफ' को नामांकित किया। वन हेल्थ अंतर-मंत्रालयी घोषणा को अंतिम रूप देने और प्रस्तावित "वन हेल्थ

कॉन्क्लेव" एजेंडे की योजना के लिए समन्वय करने के लिए MoES से नोडल व्यक्ति के रूप में।

श्री पी. एस. बीजू, वैज्ञानिक 'ई' को मेरिट प्रमाणपत्र प्रदान किया गया। 27 जुलाई, 2022 को MoES के स्थापना दिवस के अवसर पर (IMD)।

डॉ. मृत्युंजय महापात्र, महानिदेशक, आईएमडी को अगस्त, 2022 में "अनुसंधान प्रयोगशालाओं से बाहर के प्रतिष्ठित व्यक्ति" श्रेणी के तहत आईआईआईटी वडोदरा के बोर्ड ऑफ गवर्नर्स के विशेषज्ञ सदस्य के रूप में नामित किया गया है।

ओडिशा के माननीय राज्यपाल और एफएम विश्वविद्यालय के कुलाधिपति, **डॉ. गणेशी लाल** ने विज्ञान (मौसम विज्ञान) के क्षेत्र में उनके योगदान के लिए **डॉ. मृत्युंजय महापात्र**, महानिदेशक, आईएमडी को व्यास गौरव सम्मान से सम्मानित किया, जिससे चक्रवात में आदर्श बदलाव आया है। भारत में चेतावनी सेवाएँ और मरने वालों की संख्या को दोहरे अंक तक कम करने में सक्षम बनाया गया।

डॉ. मृत्युंजय महापात्र, महानिदेशक, आईएमडी को 2 अक्टूबर, 2022 को इंटरव्यू टाइम्स, भुवनेश्वर द्वारा सबसे प्रेरणादायक व्यक्तित्व पुरस्कार से सम्मानित किया गया। उन्होंने इंटरव्यू टाइम्स (https://youtu.be/) द्वारा आयोजित रैपिड फायर राउंड साक्षात्कार कार्यक्रम में भाग लिया। I1CNx4t7VP8).

डॉ. मृत्युंजय महापात्र, महानिदेशक, आईएमडी ने 15 अक्टूबर को दिल्ली विश्वविद्यालय के वल्लभभाई पटेल चेस्ट इंस्टीट्यूट में विश्व पर्यावरण शिखर सम्मेलन 2022 में सम्मानित अतिथि के रूप में भाग लिया। कार्यक्रम के दौरान उन्हें पर्यावरण एवं सामाजिक विकास संघ (ईएसडीए) पर्यावरण उत्कृष्टता पुरस्कार-2022 से सम्मानित किया गया।

श्री राजा आचार्य, मौसम विज्ञानी, डब्ल्यूएमओ द्वारा 20-21 अक्टूबर, 2022 को हाइब्रिड मोड में आयोजित 25वीं वार्षिक महासागर अवलोकन भौतिकी और जलवायु पैनल (ओओपीसी) बैठक में एक पर्यवेक्षक के रूप में ऑनलाइन मोड के माध्यम से भागीदारी के संबंध में 'ए' को डब्ल्यूएमओ से सराहना मिली।

आईएमडी में मान्यता प्राप्त खिलाड़ी श्री मोहित, एस.ए. ने इंटर मिनिस्ट्री टूर्नामेंट जीता और 25 से 27 दिसंबर, 2022 को आयोजित 41^{वी} राष्ट्रीय शूटिंग बॉल चैंपियनशिप के लिए चयनित हुए।

डॉ. संजय ओ'नील शॉ, वैज्ञानिक 'एफ' को पृथ्वी विज्ञान मंत्रालय द्वारा वर्ष 2021-22 के दौरान 17.10.22 पर आधिकारिक भाषा के लिए आधिकारिक नोडल अधिकारी के रूप में काम करने के लिए उत्कृष्टता प्रमाण पत्र से सम्मानित किया गया।

11.2. मीडिया इंटरेक्शन

डॉ. एस. डी. अत्री, वैज्ञानिक 'जी' ने 21 जनवरी, 2022 को आकाशवाणी नई दिल्ली में "**मौसम और कृषि**" विषय पर कार्यक्रम में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 18 फरवरी, 2022 को ऑल इंडिया रेडियो द्वारा प्रसारित "मेघ विद्या" विषय पर कार्यक्रम "सुनने की शक्ति" के 21^व एपिसोड में "मौसम पूर्वानुमान के प्राचीन भारतीय ज्ञान" पर चर्चा की। प्रसारण कार्यक्रम https://youtu.be/a07Lv8j2iX8 पर भी उपलब्ध है।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 2 मार्च, 2022 को "सीएसई के वार्षिक मीडिया कॉन्क्लेव" में भाग लिया और "चरम मौसम की घटनाओं पर जलवायु परिवर्तन के प्रभाव" पर एक व्याख्यान दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 11 मार्च, 2022 को "**चक्रवात प्रबंधन**" पर दूरदर्शन द्वारा आयोजित वर्चुअल पैनल चर्चा शो में भाग लिया।

श्री मनमोहन सिंह, वैज्ञानिक 'एफ' ने 23 मार्च, 2022 को दूरदर्शन चंडीगढ़ पर "विश्व मौसम विज्ञान दिवस 2022" के अवसर पर "पंजाब राज्य के लिए आईएमडी द्वारा प्रदान की जाने वाली सेवाएं" विषय पर एक ऑनलाइन वार्ता दी।

WM दिवस 2022 की थीम पर रेडियो और टीवी वार्ताः डॉ. एस. बालचंद्रन, वैज्ञानिक एफ' द्वारा "प्रारंभिक चेतावनी और प्रारंभिक कार्रवाई पर एक वार्ता - आपदा जोखिम न्यूनीकरण के लिए जल-मौसम विज्ञान और जलवायु सूचना" का प्रसारण एफएम रेनबो 101.4 मेगाहर्ट्ज द्वारा 23 मार्च, 20.22 को 10:02 IST पर किया गया था।

श्री मनमोहन सिंह, वैज्ञानिक 'एफ' ने 30 अप्रैल, 2022 को दूरदर्शन जालंधर पर प्रसारित एक करंट अफेयर्स कार्यक्रम में "हीट वेव और खाद्य सुरक्षा" पर एक लाइव ऑनलाइन बातचीत में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 2 मई, 2022 को संसद टीवी - पर्सपेक्टिव में प्राइम टाइम इंग्लिश शो के दौरान "हीट वेट्स एंड क्लाइमेट चेंज" पर चर्चा में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 9 मई, 2022 को ऑल इंडिया रेडियो द्वारा "मानसून तैयारी, चक्रवात और हीट वेव" पर रिकॉर्डिंग में भाग लिया। डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 19 मई, 2022 को संसद टीवी के "चरम मौसम की स्थिति और ग्लोबल वार्मिंग" विषय पर विशेष प्राइम टाइम हिंदी शो की रिकॉर्डिंग में भाग लिया।

डॉ. गीता अग्निहोत्री, वैज्ञानिक 'ई' ने तिमाही के दौरान इलेक्ट्रॉनिक और प्रिंट मीडिया द्वारा लगभग 135 मौसम संबंधी पूछताछ का उत्तर दिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 26 मई, 2022 को दूरदर्शन द्वारा "दक्षिण-पश्चिम मानसून" के बारे में आभासी चर्चा की रिकॉर्डिंग में भाग लिया।

श्री तमल मुखर्जी, वरिष्ठ निर्माता, करंट अफेयर्स, कैन मीडियाकॉर्प, सिंगापुर ने 3 जून, 2022 को "हीट वेव, जलवायु परिवर्तन और खाद्य सुरक्षा पर प्रभाव" पर एक वृतचित्र के लिए डॉ. मृत्युंजय महापात्र, महानिदेशक, आईएमडी का एक संक्षिप्त साक्षात्कार शूट किया।

श्री के. एस. होसालिकर, वैज्ञानिक 'जी' द्वारा "मौजूदा मौसम और मानसून" पर विशेष साक्षात्कार दिए गए। मीडिया और हितधारकों को।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी और अध्यक्ष, दिक्षण एशिया हाइड्रोमेट फोरम (एसएएचएफ) ने 26 मई, 2022 को RIMES द्वारा आयोजित श्री कर्मा दुफ़्, सह-अध्यक्ष, एसएएचएफ के साथ पॉडकास्ट रिकॉर्डिंग में भाग लिया।

टीबीएस न्यूज स्टेशन, दक्षिण कोरिया के रिपोर्टर श्री हयेरयोन चुंग ने 4 जून, 2022 को मानसून के संबंध में आईएमडी के महानिदेशक डॉ. एम. महापात्र का साक्षात्कार लिया।

श्री मनमोहन सिंह, वैज्ञानिक 'एफ' ने 5 जून, 2022 को दूरदर्शन चंडीगढ़ पर 'विश्व पर्यावरण दिवस 2022' के

अवसर पर एक लाइव ऑनलाइन टॉक शो में भाग लिया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी 16 जून, 2022 को ब्लूमबर्ग टीवी के एंकर रिशाद सलामत और हसलिंडा अमीन के साथ 'ब्लूमबर्ग मार्केट्स एशिया' शो के लिए लाइव साक्षात्कार में शामिल हुए।

"खुश हाल जीवन के लिए अवसर है मौसम का पूर्वानुमान" विषय पर आईएमडी के महानिदेशक डॉ. एम. महापात्र के साथ एक विशेष साक्षात्कार सीएसआईआर के जुलाई मासिक अंक में प्रकाशित किया गया था।

आईएमडी ने यूट्यूब, फेसबुक, ट्विटर और आईएमडी वेबसाइट के माध्यम से अंग्रेजी और हिंदी में लगभग 5 मिनट की अविध का दैनिक मौसम पूर्वानुमान वीडियो जारी किया। ग्राफिक्स के साथ बुलेटिन और चेताविनयाँ फेसबुक, ट्विटर, इंस्टाग्राम, यूट्यूब और आईएमडी ब्लॉग पेज सहित सोशल मीडिया के माध्यम से भी संप्रेषित की गईं।

विस्तारित सीमा पूर्वानुमान पर साप्ताहिक वीडियो प्रत्येक गुरुवार को वेबसाइट और सोशल मीडिया (फेसबुक, ट्विटर, यूट्यूब आदि) के माध्यम से जारी किए गए थे। आईएमडी के क्षेत्रीय कार्यालयों द्वारा क्षेत्रीय भाषा में पूर्वानुमान वीडियो नियमित रूप से जारी किए जाते थे।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 22 अगस्त, 2022 को ज़ूम के माध्यम से संसद टीवी द्वारा आयोजित "मानसून बदलते पैटर्न" पर चर्चा करते हुए प्राइम टाइम इंग्लिश शो "पर्सपेक्टिव" के दौरान मुख्य वक्ता के रूप में भाग लिया।

डॉ. गीता अग्निहोत्री, वैज्ञानिक 'एफ' ने जुलाई से सितंबर 2022 के दौरान इलेक्ट्रॉनिक और प्रिंट मीडिया द्वारा 45 मौसम संबंधी पूछताछ का उत्तर दिया।

आईएमडी ने यूट्यूब, फेसबुक, ट्विटर और आईएमडी वेबसाइट के माध्यम से अंग्रेजी और हिंदी में लगभग 5 मिनट की अविध का दैनिक मौसम पूर्वानुमान वीडियो जारी किया।

विस्तारित सीमा पूर्वानुमान (दो सप्ताह तक) पर साप्ताहिक वीडियो प्रत्येक गुरुवार को वेबसाइट और सोशलमीडिया (फेसबुक, ट्विटर, यूट्यूब आदि) के माध्यम से जारी किए गए थे। ग्राफिक्स के साथ बुलेटिन और चेतावनियाँ फेसबुक, ट्विटर, इंस्टाग्राम, यूट्यूब और आईएमडी ब्लॉग पेज सहित सोशल मीडिया के माध्यम से संप्रेषित की गई।

भारत मौसम विज्ञान विभाग (आईएमडी) ने 1 नवंबर, 2022 को "नवंबर, 2022 महीने के लिए वर्षा और तापमान का हिष्टकोण" पर प्रेस कॉन्फ्रेंस आयोजित की। आईएमडी के महानिदेशक डॉ. एम. महापात्र ने प्रेस कॉन्फ्रेंस को ऑनलाइन संबोधित किया।

डॉ. एम. महापात्र, महानिदेशक, आईएमडी ने 30 दिसंबर को दूरदर्शन पर प्रसारित होने वाले एनडीएमए द्वारा शीत लहर पर आयोजित विशेष कार्यक्रम 'आपदा का सामना' की रिकॉर्डिंग में भाग लिया।

डॉ. मृत्युंजय महापात्र, डीजीएम आईएमडी ने 1 दिसंबर, 2022 को दिसंबर, 2022 के लिए शीतकालीन तापमान और वर्षा पूर्वानुमान के लिए मौसमी आउटलुक के संबंध में प्रेस कॉन्फ्रेंस को संबोधित किया।

मौजूदा मौसम और मानसून पर विशेष साक्षात्कार श्री के.एस. होसालिकर, वैज्ञानिक 'जी', सीआर एंड एस पुणे और हेड एसआईडी पुणे द्वारा दिए गए। विभिन्न मीडिया और हितधारकों के लिए।

तिमाही के दौरान एग्रोमेट डिवीजन द्वारा देश भर में एएमएफयू और डीएएमयू द्वारा 184 किसान जागरूकता कार्यक्रम (एफएपी) आयोजित किए गए।

तिमाही के दौरान जीकेएमएस के तहत प्रदान की गई कृषि मौसम सलाहकार सेवाओं के संबंध में 24 सफलता की कहानियां एएमएफयू और डीएएमयू से एकत्र की गई।

11.3. नई परियोजनाएं/योजनाएं/कार्यक्रम स्वीकृत/ आरंभ किए गए

दक्षिण एशिया कार्यक्रम के लिए फ्लैश फ्लड गाइडेंस सर्विसेज के तहत हालिया पहल

भारतीय उपमहाद्वीप के संवेदनशील पहाड़ी क्षेत्रों में भूस्खलन से जुड़ी अचानक बाढ़ की बेहतर भविष्यवाणी के लिए फ्लैश फ्लड मार्गदर्शन प्रणाली में भूस्खलन संवेदनशीलता मॉड्यूल का एकीकरण। पिछले कुछ बाढ़ सीज़न के दौरान, ये घटनाएं उत्तराखंड के रुद्रप्रयाग जिले और केरल के वायनाड जिले में तेजी से देखी जा रही हैं। इसलिए, जीएसआई, एनआरएससी, आईएमडी और एचआरसी के सहयोग से दो स्थानों पर भूस्खलन संवेदनशीलता क्षेत्र पर पायलट अध्ययन करना अनिवार्य है।

शहरी शहरों की वास्तविक समय में बाढ़ की निगरानी के लिए शहरी बाढ़ मॉड्यूल का फ्लैश फ्लड मार्गदर्शन प्रणाली में एकीकरण। इस संदर्भ में, बढ़ती विकास क्षमता, अचानक बाढ़/जल भराव की संवेदनशीलता, उपलब्ध अपेक्षित डेटासेट, डॉपलर मौसम रडार डेटा आदि के आधार पर शहरी बाढ़ मॉडलिंग पर पायलट अध्ययन के लिए दिल्ली का चयन किया गया है।

दक्षिण एशिया कार्यक्रम के लिए प्रमुख फ्लैश फ्लड गाइडेंस सर्विसेज के तहत, भारतीय उपमहाद्वीप के कमजोर पहाड़ी क्षेत्रों में भूस्खलन से संबंधित फ्लैश बाढ़ की बेहतर भविष्यवाणी के लिए फ्लैश फ्लड गाइडेंस सिस्टम में भूस्खलन संवेदनशीलता मॉड्यूल का एकीकरण। शहरी शहरों की वास्तविक समय में बाढ़ की निगरानी के लिए शहरी बाढ़ मॉड्यूल का फ्लैश फ्लड मार्गदर्शन प्रणाली में एकीकरण।

डॉ. एस. बालाचंद्रन, वैज्ञानिक 'एफ' ने 6 जनवरी, 2022 को एनआईओटी चेन्नई परिसर, पल्लीकरनई में स्थापित "एक्स बैंड रडार की ड्रोन आधारित अंशांकन गतिविधियों" में भाग लिया।

श्री हिमाद्रि बैश्य, वैज्ञानिक 'सी' और श्री पी. दत्ता, मैकेनिक-।, सीआरएस पुणे से इंस्टॉलेशन पार्टी के साथ "सेलकॉम एडब्ल्यूएस और स्नो गेज सेंसर" की स्थापना के लिए तवांग और बोमडिला (अरुणाचल प्रदेश) के लिए रवाना हुए। 17-26 जनवरी, 2022.

(i) यम्मेंग हाइड्रो प्रोजेक्ट, अरुणाचल प्रदेश और (ii) कटापित बैराज, महाराष्ट्र के लिए दो डिजाइन तूफान अध्ययन पूरे हो गए और मूल्य संबंधित परियोजना प्राधिकरण को भेज दिए गए।

परियोजना नलगंगा बांध, महाराष्ट्र पर एक विस्तृत रिपोर्ट तैयार की गई है और संबंधित परियोजना प्राधिकरण को भेज दी गई है।

जीपी कैप्टन के अनुरोध पर, कमांड मेट. डिफेंस एक्सपो 0600 यूटीसी और 0800 यूटीसी विशेष पी.बी. के एक भाग के रूप में रिवर फ्रंट, अहमदाबाद पर एयर डिस्प्ले के संचालन के संबंध में अधिकारी। आरोहण प्रभावी 23/02/2022 से 04/03/2022 तक लिया गया और आईएएफ को डेटा प्रदान किया गया।

दो संख्या 28 टीबी एनएएस स्टोरेज वाले हाई एंड सर्वर को अनुकूलित वर्षा सूचना प्रणाली और हाइड्रोलॉजिकल सेवाओं के लिए हार्डवेयर समर्थन के रूप में मार्च, 2022 के दौरान चालू किया गया था।

केंद्रीय क्षेत्र योजना के तहत धन के प्रवाह के लिए संशोधित प्रक्रिया का कार्यान्वयन 12 अप्रैल, 2022 को MoES में आयोजित किया गया था।

जून, 2022 के महीने में - आईएमडी, पुणे द्वारा पुणे जिले, महाराष्ट्र में चार एडब्ल्यूएस स्थापित किए गए थे।

आईएमडी की वेबसाइट पर नाउकास्ट सत्यापन पोर्टल में मानचित्र प्रदर्शन, उपविभाग-वार विकल्प, पंजीकृत पृष्ठ और लॉगिन पृष्ठ जोड़ा गया है। एम.सी. जयपुर के लिए पिछले वर्ष के मानसून डेटा के लिए वेब-पेज भी बनाया गया है।

आईएमडी स्टोर्स डैशबोर्ड को (डेस्कटॉप, प्रिंटर, स्कैनर, यूपीएस, फोटोकॉपियर और एयर कंडीशनर इत्यादि), अप्रचलित वस्तुओं और ऐतिहासिक/कलात्मक मूल्य वस्तुओं सिहत सभी अचल संपत्तियों की प्रविष्टियों की लाइव स्थिति दिखाने के लिए लॉन्च किया गया है। मेटनेट में लॉगइन बाय सेक्शन पर जाकर स्टोर इन्वेंटरी में आईएमडी कार्यालयों के सभी अन्भागों द्वारा प्रविष्टियां की जा रही हैं।

डॉ. शंकर नाथ, वैज्ञानिक 'ई' के मार्गदर्शन में श्री विकास मीना, एस.ए. द्वारा "पब्लिक ऑब्जर्वेशन" नामक एक क्राउड-सोर्स ऐप विकसित किया गया। को आईएमडी के स्थापना दिवस के अवसर पर लॉन्च किया गया था।

संचयी वर्षा (मिमी) और पानी की मात्रा (टीएमसी) की गणना पूरी हो गई। जून, 2021 से भारत के नदी उप बेसिन के लिए हर सप्ताह अनुरूप मानचित्र तैयार किए जा रहे हैं।

सीडब्ल्यूसी विशाखापत्तनम, एम.सी. की वेबसाइटें अगरतला, एम.सी. अहमदाबाद, एम.सी. अमरावती, एम.सी. चंडीगढ़, एम.सी. ईटानगर, एम.सी. जयपुर, एम.सी. लेह, एम.सी. लखनऊ, एम.सी. पटना, एम.सी. शिलांग को हिंदी भाषा में परिवर्तित कर दिया गया है।

कुशीनगर (उत्तर प्रदेश), सिंधुदुर्ग (महाराष्ट्र) में **नए हवाई अड्डे** शुरू हुए। 77 फ्रेंजिबल मस्तूल की स्थापना और वर्तमान मौसम।

60 हवाई अड्डों पर **इंस्ट्रमेंट सिस्टम** (सीडब्ल्यूआईएस) पूरा हो गया है।

वर्तमान मौसम और दृश्यता सेंसर दिल्ली, हैदराबाद, कोझिकोड, पाकयोंग, पटना और शिरडी हवाई अड्डों पर स्थापित किया गया है।

सीईएल (संट्रल इलेक्ट्रॉनिक्स लिमिटेड) द्वारा निर्मित हिष्ट प्रोटोटाइप आईजीआई हवाई अड्डे, दिल्ली में स्थापित किया गया है और निगरानी में है।

जुलाई, 2022 में अगरतला और लेंगपुई में स्कैटरोमीटर आरवीआर स्थापित किया गया है और अगस्त, 2022 में तिरूपति हवाई अड्डे पर डीआईडब्ल्यूई स्थापित किया गया है।

DCWIS को गन्नावरम हवाई अड्डे पर, DCWIS और PWD के साथ भुवनेश्वर हवाई अड्डे और कोल्हापुर हवाई अड्डे पर सितंबर, 2022 में स्थापित किया गया था।

PWD को सितंबर 2022 में जयपुर और अमृतसर हवाई अड्डे पर स्थापित किया गया था।

एनआईटी राउरकेला में एडब्ल्यूएस 23 दिसंबर, 2022 को चालू किया गया है।

400 AWS परियोजना के तहत केरल, मणिपुर और मेघालय राज्य में 03 AWS स्थापित किए गए हैं।

DCWIS प्रणाली ख़ुशीनगर, मदुरै और राउरकेला हवाई अड्डे (SAIL) पर क्रमशः अक्टूबर, नवंबर और दिसंबर 2022 में स्थापित की गई थी।

11.4. विभिन्न आरएमसी एवं मौसम केन्द्रों के पते

RMC New Delhi

Head, Regional Meteorological Centre, IMD, RMC Building, Lodi Road, New Delhi – 110003 e-mail: rmc.delhi@imd.gov.in

RMC Kolkata

Head, Regional Meteorological Centre, RMC Kolkata, 4, Dual Avenue, Alipur Kolkata – 700027 e-mail: rmc.kolkata@imd.gov.in

Delhi Region

Director

Meteorological Centre, SCO-2455-56, (First Floor), Sector 22 C, CHANDIGARH - 160 022. e-mail: chandimet@yahoo.com

Director

Meteorological Centre, Mausam Bhawan, Budhsinghpura, Sanganer, JAIPUR – 302 01. e-mail: mcjpr@imd.gov.in mcjaipur2007@yahoo.com

Director

Meteorological Centre, Civil Aerodrome, Amausi, LUCKNOW - 226 009. e-mail: amo.lkn@imd.gov.in

Director

Meteorological Centre, Ram Bagh Complex, SRINAGAR – 190 015. e-mail: lotusladakh@gmail.com

Director

Meteorological Centre, Survey of India Compound, 17, E.C. Road, Karanpur, DEHRADUN-248 001. e-mail: mcdehradun@yahoo.co.in

Director

Meteorological Centre, Bibra House, Cliffend Estate, SHIMLA – 171 001. e-mail: mc.sml@imd.gov.in

Chennai Region

Director

Meteorological Centre, Central Observatory, Palace Road, BANGALORE – 560 001. e-mail: mcbng@imd.gov.in amo.bng@imd.gov.in

RMC Chennai

Head, Regional Meteorological Centre, IMD, RMC Chennai, New 6, Tamil Nadu – 600006 e-mail: rmc.chennai@imd.gov.in

RMC Nagpur

Head, Regional Meteorological Centre, IMD, DBAI Airport, Sonegaon, Nagpur – 440005 e-mail: rmc.nagpur@imd.gov.in

Director

Meteorological Centre, Hyderabad Airport, HYDERABAD – 500 016. e-mail: mchyd@imd.gov.in amo.hyd@imd.gov.in

Director

Meteorological Centre, Observatory, THIRUVANANTHAPURAM – 695 033. e-mail: mc.trv@imd.gov.in mctrivandrum@gmail.com

Director

Meteorological Centre, Amaravati SRM University Campus, Neerukonda, Guntur District, Andhra Pradesh -522502 e-mail: mcamaravati.ws@imd.gov.in

Mumbai Region

Director

Meteorological Centre, Civil Aerodrome, AHMEDABAD - 380 012. e-mail: mc.ahm@imd.gov.in mchm@rediffmail.com

Director

Meteorological Centre, Altinho, Panaji, GOA – 403 001. e-mail: mc.goa@imd.gov.in

Kolkata Region

Director

Meteorological Centre, Civil Aerodrome, BHUBANESHWAR - 751 009. e-mail: mc.bwn@imd.gov.in imdbbsr@ori.nic.in

Director

Meteorological Centre, Ladaki Mansion, Baluwakhan, GANGTOK – 737 101. e-mail: mc.gtk@imd.gov.in gangtokmet@gmail.com

RMC Mumbai

Head, Regional Meteorological Centre, IMD, RMC Mumbai, Colabba, Maharashtra – 400005 e-mail: rmc.mumbai@imd.gov.in

RMC Guwahati

Head, Regional Meteorological Centre, IMD, RMC Guwahati, LGB I Airport, Guwahati – 781015 e-mail: rmc.guwahati@imd.gov.in

Director

Meteorological Centre, Civil Aerodrome, PATNA – 800 014. e-mail: mc.ptn@imd.gov.in viationmcpatna@gmail.com

Director

Meteorological Centre, Civil Aerodrome, RANCHI – 834 002. e-mail: mc.rnc@imd.gov.in metranchi@gmail.com

Nagpur Region

Director

Meteorological Centre,
Mausam Vigyan Kendra,
Arera Hills, Satpura Post Office,
BHOPAL - 462 004.
e-mail: mc.bhp@imd.gov.in
mcbhopal@rediffmail.com

Director

Meteorological Centre, Lalpur, RAIPUR e-mail: mc.rpr@imd.gov.in rsrw.rpr@gmail.com

Guwahati Region

Director

Meteorological Centre, Naharlagun Helipad complex, ITANAGAR - 791 110. e-mail: mc.itn@imd.gov.in weqaatheritn@sancharnet.in

Director

Meteorological Centre, P.O. Agartala Aerodrome, AGARARTALA - 791 110. e-mail: mc.agt@imd.gov.in amo.agt@imd.gov.in

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

पृथ्वी विज्ञान मंत्रालय, भारत सरकार

Ministry of Earth Sciences, Govt. of India