महानगरों में वायु गुणवत्ता पूर्वानुमान के लाभ

विजय कुमार सोनी

पर्यावरण निगरानी एवं अनुसन्धान केंद्र मौसम विज्ञानं के महानिदेशक का कार्यालय, नई दिल्ली

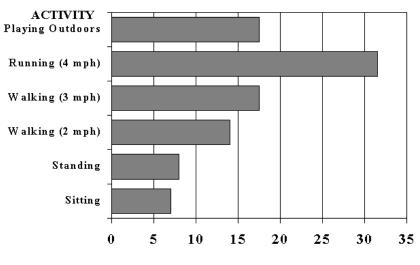
पूर्वानुमान

- पूर्वानुमान का अर्थ है किसी स्थान के वायुमंडल की भविष्य में स्थिति की भविष्यवाणी करना।
- मनुष्य हजारों वर्षों से अनौपचारिक रूप से मौसम की भविष्यवाणी करते रहा है और औपचारिक रूप से कम से कम उन्नीसवीं शती से मौसम की भविष्यवाणी कर रहा है।
- वायु गुणवत्ता के पूर्वानुमान की प्रणाली इनकी तुलना में नई है

हवा की गुणवत्ता के पूर्वानुमान के उपयोग

- स्वास्थ्य चेतावनी,
- सप्लीमेंट उत्सर्जन नियंत्रण कार्यक्रम,
- परिचालन की योजना,
- आपात्कालीन प्रतिक्रिया (Emergency response)

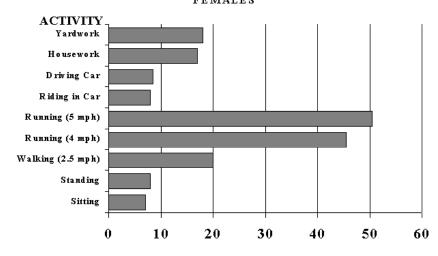
वायु प्रदूषण के बारे में हमें क्यों चिंतित होना चाहिए? Why Should We Be Concerned About Air Pollution?


- वायु प्रदूषण स्वास्थ्य के लिए एक प्रमुख पर्यावरणीय खतरा है।
- शहरों और ग्रामीण क्षेत्रों में परिवेशी वायु प्रदूषण से 2012 में 37 लाख लोगों की समय से पहले मृत्यु का अनुमान लगाया गया था (स्रोत: डब्ल्यूएचओ)

दुनिया भर में हर साल मोटर गाड़ी दुर्घटना से होने वाली मौतों की तुलना में वायु प्रदूषण से होने वाली मौतें अधिक है.

वायु प्रदूषण के बारे में हमें क्यों चिंतित होना चाहिए?

साँस लेने की आवृत्ति (The breathing frequency)


Fig. 1: AMOUNT OF AIR BREATHED BY CHILDREN

AVG. LITERS OF AIR BREATHED PER MINUTE

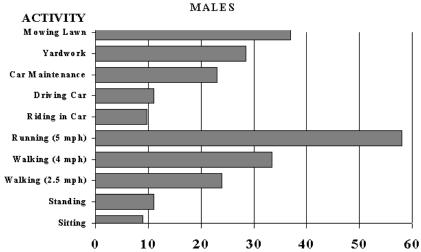

Source: California Environmental Protection Agency

Fig. 2 : AMOUNT OF AIR BREATHED BY ADULT FEMALES

AVG. LITERS OF AIR BREATHED PER MINUTE

Fig. 3: AMOUNT OF AIR BREATHED BY ADULT

AVG. LITERS OF AIR BREATHED PER MINUTE

हम कितनी हवा साँस के रूप में लेते हैं।

विश्राम की अवस्था में एक स्वस्थ वयस्क की औसत सांस लेने की आवृत्ति (या सांस की दर) प्रति मिनट 12-18 श्वास है।

एक सांस की औसत मात्रा (टाइडल वॉल्यूम) = 0.5 लीटर

विश्राम की अवस्था में एक स्वस्थ वयस्क की औसत सांस लेने की आवृत्ति (या सांस की दर) प्रति मिनट 12-18 श्वास है। उदाहरण के तौर पर 15 साँस / मिनट सांस की दर के साथ काम करते हैं)

एक वयस्क प्रति दिन 21,600 बार सांस लेता है

एक औसत व्यक्ति साँस लेगा 21600x0.5 = 10800 लीटर = 10.8 घन मीटर

शुष्क हवा का घनत्व 1.2754 किलोग्राम / घन मीटर है

एक स्वस्थ वयस्क व्यक्ति औसत साँस लेगा = 10.8x 1.2754 ≈ 14 Kg of Air

"वायु की गुणवत्ता" : परिभाषा

"वायु की गुणवत्ता" का मतलब हमारे चारों ओर हवा की स्थिति से है। अच्छी वायु की गुणवत्ता का तात्पर्य स्वच्छ, प्रदूषणरहित हवा से है।

परिवेशी वायु गुणवत्ता (Ambient Air Quality)

"परिवेशी वायु गुणवत्ता" हमारे आसपास के वातावरण में बाहरी हवा की गुणवत्ता को दर्शाता है। यह आम तौर पर प्रदूषण के सीधे स्रोतों से दूर एवं जमीनी स्तर के पास मापा जाता है।

भीतरी वायु गुणवत्ता (Indoor Air Quality)

भारत में वायु गुणवत्ता की प्रमुख समस्याएं

ग्रीष्म ऋतु	शिशिर	लंबी दूरी परिवहन
धूल प्रदूषण		अफ्रीका और अरब
	शहर संबंधी स्मोग	प्रायद्वीप से धूल प्रदूषण
क्षेत्रीय / शहरी पैमाने प्रकाश	~ '	
रासायनिक एपिसोड	सर्दियों के पार्टिकुलेट मैटर	समताप मंडल से ओजोन
जंगल की आग	एपिसोड	का प्रवेश
पराग कण		

पृष्ठभूमि

• हवा की गुणवत्ता की भविष्यवाणी करने के लिए डेटा उत्पादों, सूचना, उपकरण, और अनुभव का उपयोग किया जाता है।

• पूर्वानुमान साधन :

DELHI

PUNE

MUMBAI

आत्मपरक Subjective वस्तुनिष्ठ Objective

अधिक पूर्वानुमान साधन = बेहतर परिणाम ।

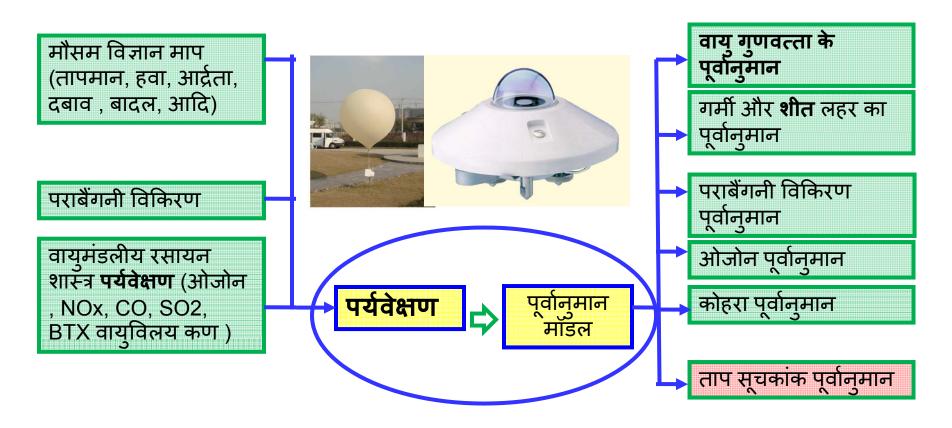
Air Quality Forecast (1-3 days): Levels in µgm-3

Ahmedabad

Chennai

Pollutants	Today	Advisory	Tomorrow's Forecast	Advisory	After 3 days	Advisory
PM10 (µgm-3)	198.5	Moderate 🛑	189.1	Moderate 🛑	184.23	Moderate 🛑
PM2.5 (µgm-3)	107.3	Poor	102.2	Poor 🛑	98.2	Poor 🛑

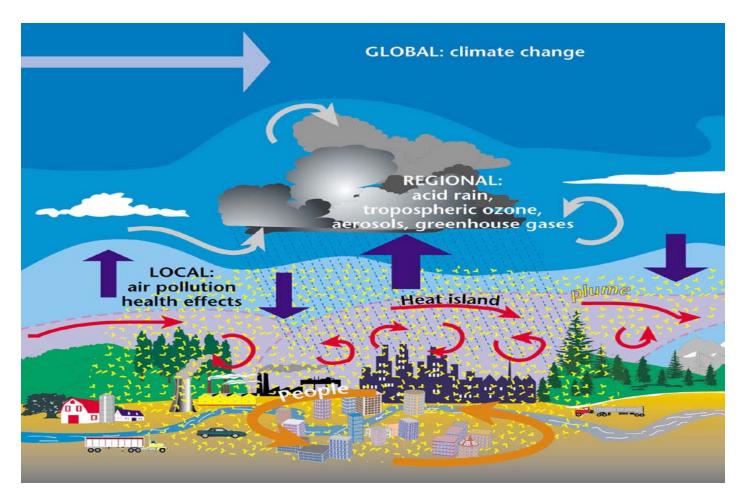
Kolkata


पृष्ठभूमि

- सातत्य (Persistence)
- क्लाइमेटोलोजी (Climatology)
- मानदंड (Criteria)
- सांख्यिकीय (Statistical)
 - प्रतिगमन (Regression)
- तंत्रिका जाल (Neural networks)
- संख्यात्मक मॉडलिंग (Numerical modeling)

कम संसाधन, कम सटीकता

अधिक संसाधन, संभावित उच्च सटीकता


सार्वजनिक स्वास्थ्य के लिए मौसम विज्ञान सेवाएं

पूर्वानुमान प्रणाली में वायुविलय कण?

- शोधकर्ताओं के लिए मौसम और हवा की गुणवत्ता में सुधार लाने में उपयोगी मार्गदर्शन
- PM2.5 PM10 वायु गुणवत्ता का समय से पहले होने वाली मौतों के लिए अग्रणी योगदान रहा है

WMO GURME

विभिन्न क्षेत्रों को जोड़ने का कार्य

वायु की गुणवत्ता पूर्वानुमान और अनुसंधान की प्रणाली

SYSTEM OF AIR QUALITY FORECASTING & RESEARCH (SAFAR-India)

सफ़र (SAFAR) क्या है ?

वायु गुणवत्ता का पूर्वानुमान

(O3, NOx, CO, PM2.5, PM10, BC, BTX)

(1) Weather Forecasting Model: Drives Air Pollutants

MUST: Monitor Weather Parameters (24x7)

WHY: Validating Forecast, Assimilate and Input back

- (2) High resolution Emission inventories Drives Forecast
- (3) Air Quality Forecasting Model

MUST: Monitor Air Pollutants Strategically (24x7)

WHY: Validating Forecast, Assimilate and input back

- (4) Reaching to Public

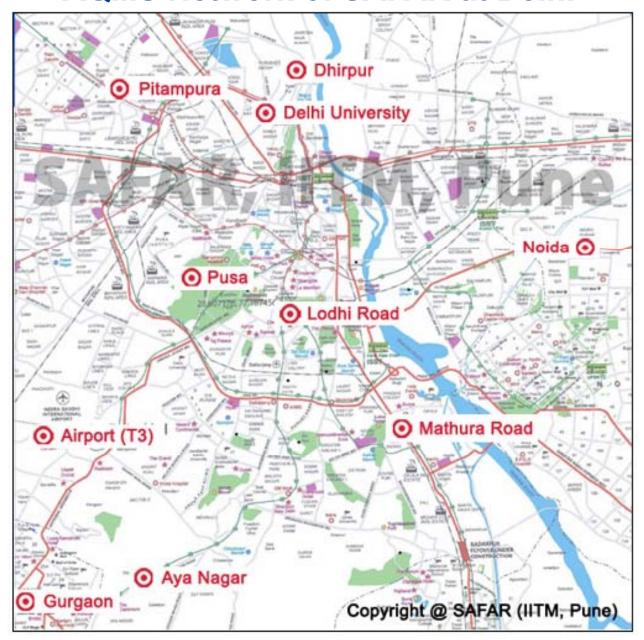
(b) Issue Advisories & Alerts;

(a) Translate Data to Information; HOW- Develop AQI Concept

HOW- Advise on Health via AQI

Delhi

Area : 1483 Km²

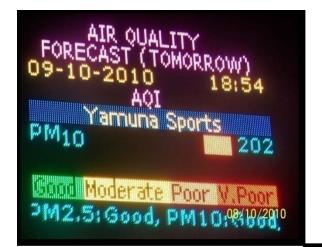

Density 2001: 9294

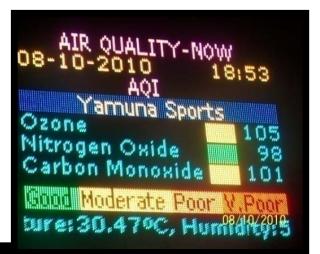
Density 1991: 6352

House Hold : 2554149

Population 2011 : 18451000

AQMS Network of SAFAR at Delhi



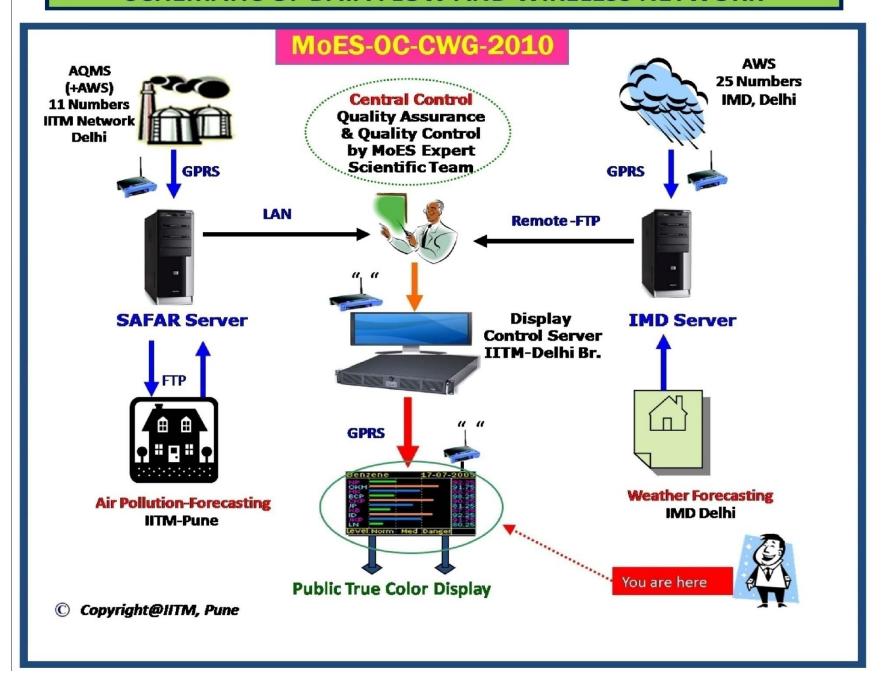

14 Outdoor Display Network

वायु गुणवत्ता निगरानी

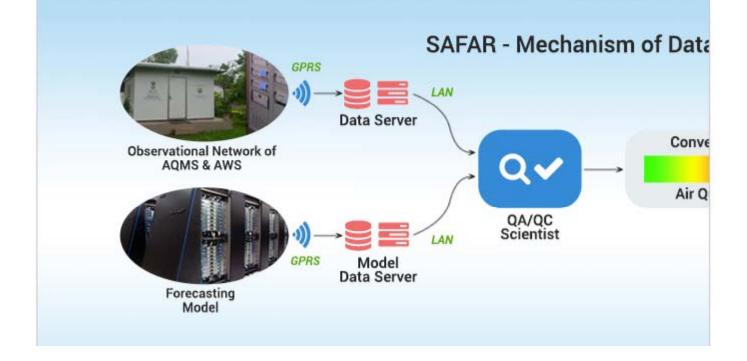
AQ Monitoring Stations in Delhi

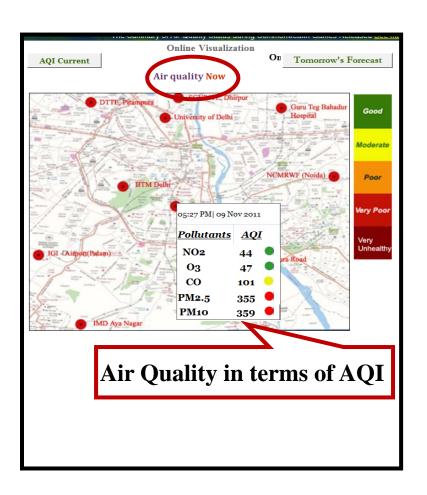
Name of monitoring station	Monitored parameters
IITM, Delhi	PM (10 & 2.5), NO, NO2, CO, O3, BTX, CO2, BC
IMD, Lodhi Road	PM (10 & 2.5), NO, NO2, CO, O3, BTX, CO2, BC
NCMRWF, NOIDA	PM (10 & 2.5), NO, NO2, CO, O3,CO2
CRRI, Mathura Road	PM (10 & 2.5), NO, NO2, CO, O3, BTX, BC
IMD Ayanagar	PM (10 & 2.5), NO, NO2, CO, O3, BTX, BC
CV Raman Institute, Dheerpur	PM (10 & 2.5), NO, NO2, CO, O3, CO2
Delhi University	PM (10 & 2.5), NO, NO2, CO, O3, BTX, BC
IGI Palam Airport	PM (10 & 2.5), NO, NO2, CO, O3, CO2
NISE, Gurgaon	PM (10 & 2.5), NO, NO2, CO, O3, CO2
DTTE Pitampura	PM (10 & 2.5), NO, NO2, CO, O3, CO2

Monitoring Station-Outer View


Monitoring Station-Inner View

SCHEMATIC OF DATA FLOW AND WIRELESS NETWORK


SAFAR -


System of Air Quality and Weathe

Ministry of Earth Scien Indian Institute of Tropica

HOME ABOUT SAFAR MONITORING SYSTEM FORECASTING AQI QA & QC PRODUCTS

RESEARCH MEDIA CONTACT US

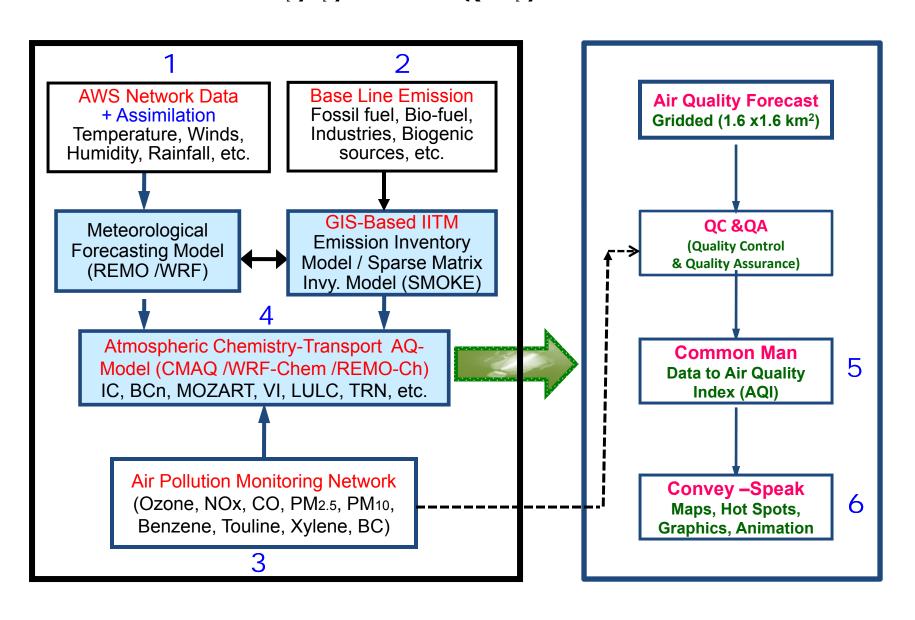
वायु गुणवत्ता सूचकांक Air Quality Index

$$I = \frac{I_{high} - I_{low}}{C_{high} - C_{low}} (C - C_{low}) + I_{low}$$

I is the (Air Quality) index, C is the pollutant concentration, C_{low} is the concentration breakpoint that is $\leq C$, C_{high} is the concentration breakpoint that is $\geq C$, I_{low} is the index breakpoint corresponding to C_{low} and I_{high} is the index breakpoint corresponding to C_{high} .

वायु गुणवत्ता सूचकांक Air Quality Index

Description	AQI	PM10 µg/m² 24 hr avg	PM2.5 μg/m² 24 hr avg	CO ppm 8 hr avg	O3 ppb 24 hr avg	NO2 ppb 24 hr avg
Good + Satisfactory	0-100	0-100	0-60	0-1.7	0-50	0-43
Moderate	101-200	101-250	61-90	1.8-8.7	51-84	44-96
Poor	201-300	251-350	91-120	8.8-14.8	85-104	97-149
Very Poor	301-400	351-430	121-250	14.9-29.7	105-374	150-213
Severe	401-500	431-550	251-350	29.8-40	375-450	214-750


उत्सर्जन सूची

Emission Inventory

- Detailed emissions inventory was prepared by for the Delhi area at a resolution of 1.67kmx1.67km for National Capital Region Delhi (NCR) (70km×65km) and the surrounding areas (in total covering 115.23km×138.6km). Field campaign during March— May 2010
- The emission data was developed for NOx, CO, BC, PM2.5, PM10, OC, VOC and SO2 for four sectors (i.e. power, industrial, transport, residential).

		Contribution from each anthropogenic sector				
Species	tday ⁻¹	Transportation	Power	Industry	Domestic	
SO ₂	81	12.9%	48.7%	25.2%	13.2 %	
NOx	598.5	69.4 %	13.2%	4.5 %	12.9%	
co	1320.3	43.7%	0.2%	4.0 %	52.0%	
PM_{10}	344.8	86.8%	7.9%	4.6%	0.8%	
PM _{2.5}	128.6	52.6%	9.9%	15.3%	22.2%	
BC	36.9	58.9%	3.0%	6.6%	31.5%	
oc	35.1	30.5%	5.6%	10.6%	53.3 %	
NMOC	852.4	58.4%	1.2%	5.2%	35.3%	

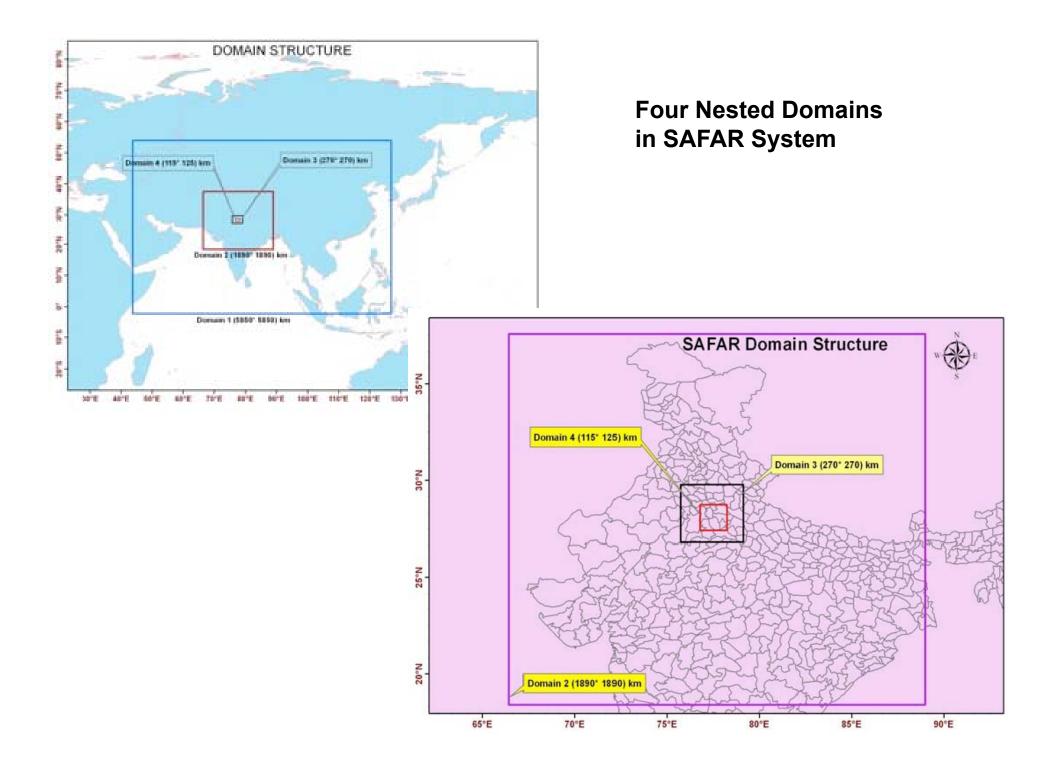
SAFAR वायु गुणवत्ता पूर्वानुमान प्रणाली

वायुमंडलीय रसायन विज्ञान परिवहन पूर्वानुमान मॉडल ATMOSPHPHERIC CHEMISTRY TRANSPORT FORECASTING MODEL

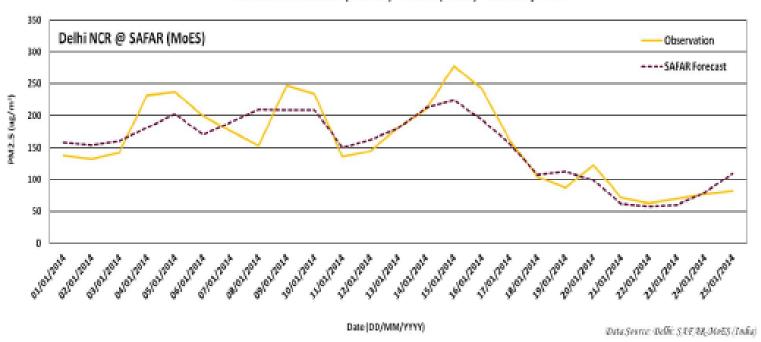
SYSTEM-1:

Meteorological Model -WRF Emission Model -GIS based Statistical Model (EGIS) Atmospheric Chemistry Transport Model -WRF-CHEM

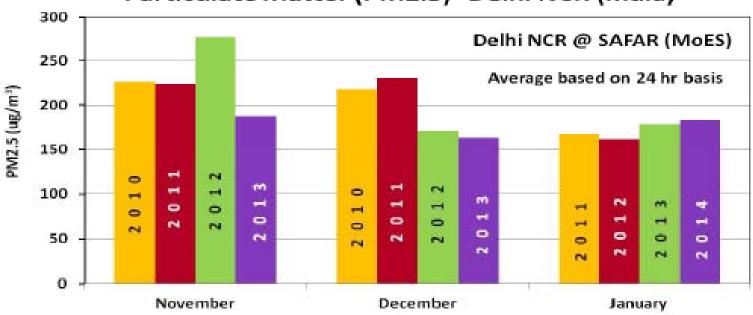
Complete System: WRF-CHEM-EGIS


SYSTEM-2:

SYSTEM-2: Meteorological Model –REMO /WRF
Emission Model –GIS based Statistical Model (EGIS) Atmospheric
Chemistry transport Model –CMAQ


Complete System: REMO /WRF-CMAQ-EGIS

MACC Services for SAFAR


- European Centre for Medium-Range Weather Forecasts (ECMWF) –
 Monitoring Atmospheric Composition and Climate (MACC) provided
 72 hr forecast for key pollutants.
- Online CTM WRF-Chem is used to forecast air pollutants over 4 nested domains covering South Asia at 45 km to Delhi city at 1.67 km.
- •MACC 72 hr forecasted data is employed as boundary conditions to the WRF-Chem model coarse domain i.e. South Asia.
 - Provided the direct download link.

Particulate Matter (PM2.5) - Delhi (India) - January 2014

Particulate Matter (PM2.5) - Delhi NCR (India)

धन्यवाद