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सार — इस अध्ययन में उत्तराखडं के उधम ससहं नगर जिले में चावल की उपि के मानचचत्रण और अनमुान के 
सलए चावल फसल मॉडल के साथ बहु-कासलक और बहु-ध्रवुीकृत सेंटिनल-1 ए ससथंेटिक एपचचर रेडार (एसएआर) डेिा को 
आमेलन करने की उपयोचगता पर चचाच की गई है। CERES RICE मॉडल, िो DSSAT-4.7 में अतं:स्थापपत है, को 
एक आमेलन पवचध का उपयोग करके फफर से शुरू फकया गया था जिसमें कासलक एकल ध्रवुीकृत चावल पश्च प्रकीणचन 
गुणांक को जिले के सलए प्रत्येक चावल पपक्सेल के सलए समूहीकृत फकया गया था, और फफर जिले में चावल पवतरण के 
बारे में सपोिच वेक्िर वगीकरण का उपयोग करके सेंटिनल-1ए एसएआर छपवयों से चावल के खेतों की मैपपगं करके 
िानकारी प्राप्त की गई। मॉडल के पनु: आरंभीकरण के दौरान आमेलन प्रफिया के साथ वांछनीय इनपिु परैामीिर 
सेंटिनल-1ए एसएआर छपवयों से प्राप्त चावल पश्च प्रकीणचन गणुांक और यजुममत मॉडल से प्राप्त चावल पश्च प्रकीणचन 
गुणांक के बीच एक अच्छे कासलक समझौते की अनमुतत देते हैं। अधच अनभुविन्य चावल बकैस्कैिर मॉडल के साथ 
CERES RICE मॉडल का एकीकरण लीफ एररया इंडेक्स (LAI) का उपयोग करके हाससल फकया गया, िो चावल बकै 
स्कैिररगं गुणांक को अनकुरण करने के सलए एक आवश्यक सलकं के रूप में कायच करता है। पनु: आरंभीकरण के बाद, 
प्रत्येक चावल पपक्सेल से चावल की उपि की गणना की गई और अनसुंधान के क्षेत्र का उपि मानचचत्र पवकससत फकया 
गया। पररणामों से पता चला फक यजुममत मॉडल ने3190 फकलोग्राम/हेक्िेयर चावल की उपि का अनमुान टदया, िो पांच 
साल की औसत जिले की उपि के काफी करीब था, िो फक 3160 फकलोग्राम/हेक्िेयर था, जिसमें यजुममत और जिले की 
पांच साल की औसत चावल उपि के बीच 30 फकलोग्राम/हेक्िेयर का अतंर था। प्राप्त पररणामों के आधार पर, यह 
अनमुान लगाना संभव है फक सेंटिनल-1ए एसएआर डेिा में चावल की फसल की उपि का आकलन करने की क्षमता के 
साथ, चावल की तनगरानी और मानचचत्रण की काफी संभावनाएं हैं। उपि काअनमुान एक महत्वपणूच कदम है जिसका 
उपयोग चावल की उपि और उत्पादन का मौसमी आकलन प्रदान करके फकसानों और नीतत तनमाचताओ ंकी सहायता के 
सलए फकया िा सकता है। इस िानकारी का उपयोग संसाधनों की बेहतर योिना के सलए फकया िा सकता है। 

 
 

ABSTRACT. The utility of assimilation of multi-temporal and multi-polarized Sentinel-1A Synthetic Aperture 
Radar (SAR) data with a rice crop model for mapping and estimating rice yield in the Udham Singh Nagar district of 

Uttarakhand has been discussed in this study. The CERES RICE model, which is embedded in DSSAT- 4.7, was re-

initialized using an assimilation method in which the temporal single polarized rice backscattering coefficients were 
grouped for each rice pixel for the district, and then information about rice distribution over the district was obtained by 

mapping rice fields from Sentinel-1A SAR images using support vector classification. The desirable input parameters 

with the assimilation procedure during re-initialization of the model allow a good temporal agreement between the rice 
backscattering coefficients derived from Sentinel-1A SAR images and the rice backscattering coefficient derived from 

the coupled model. The integration of the CERES RICE model with the semi empirical rice backscatter model was 

achieved using Leaf Area Index (LAI), which acts as an essential link to simulate the rice back scattering coefficients. 
After re-initialization, the yield of rice was calculated from each rice pixel and a yield map of the field of research was 

developed. The results showed that the coupled model gave an estimate of rice yield of 3190 kg/ha, which was quite near 

to the five-year average district yield, which was 3160 kg/ha, with 30 kg/ha difference between the coupled and the five-
year average rice yield of the district. Based on the obtained results, it is possible to infer that Sentinel-1A SAR data has 

great potential for monitoring and mapping of rice, with the ability to predict the rice crop yield. The prediction of yield is 

an important step that may be utilized to assist farmers and policymakers by providing in-season estimates of rice yield 
and production. This information could be used for better planning of the resources. 
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1. Introduction 

 

Rice yield prediction is a primary objective of rice 

monitoring. Total estimates regarding the rice planted 

areas and productivity are generally based on ground 

survey information. This process is very time-consuming 

and expensive. In the early 1980s, the whole world gave 

more attention towards optical remote sensing for 

estimation of crop yield. Significant achievements were 

achieved after many studies were carried out (Li et al., 

2003). Setiyono et al. (2018) utilized multi-temporal           

C-band Sentinel-1A SAR imagery and to classify rice 

crop in multiple locations in Tropical Asia and incorporate 

the information into ORYZA Crop Growth Simulation 

model (CGSM) which generated high resolution yield 

maps. Similarly, for estimating the yield of winter Wheat 

for the North China region, (Son et al., 2016) integrated 

LAI derived from MODIS data with crop simulation 

model (DSSAT) for rice yield estimation in Taiwan. The 

shortcoming of optically acquired remote sensing data is 

that it is lost during overcast weather or during the rainy 

season, making real-time crop growth monitoring and 

precise rice yield estimation very challenging. Radar data 

is an ideal choice since it is the best data source for 

agricultural monitoring and yield prediction across wide 

areas in tropical and subtropical countries, particularly 

during the kharif season (Ribbes and Toan, 1999; Li            

et al., 2003; Chen et al., 2006). Crop simulation models 

(CSM) are being extensively integrated with remote 

sensing and GIS frameworks across the world, which 

shows a very high rate of success in field applications 

such as crop growth monitoring. The integration requires 

re-initialization process which helps in combining the two 

models through a link. In this study, Sentinel-1A SAR 

data is used, which was launched by the European Space 

Agency in the year 2014. This satellite is configured with 

a C-SAR payload having a frequency of 5.404 GHz, 

which gives dual polarized data in the form of VV and VH 

polarizations. The swath of this satellite is 250 km with a 

spatial resolution of 5×20 meters. The crop growth 

simulation model that has been used in this study is 

CERES RICE. This model is embedded in DSSAT- 4.7. 

DSSAT (Decision Support System for Agrotechnology 

Transfer) is application software that uses crop simulation 

models to simulate 42 crops. CERES stands for crop 

environment resource synthesis, which is utilized as a tool 

for designing crop management activities. The integrated 

system can be used for assessing the local variability, 

seasonal weather factors and crop management signals. 

Remote Sensing (RS) data, acquired continuously over 

agricultural land, helps in the identification and mapping 

of crops and also in assessing crop vitality. The remotely 

sensed data can give information related to crop 

environment, leaf area index, crop distribution, and crop 

phenology. The main factors on which productivity and 

TABLE 1 

 

Geographical location of the study sites 

 

S. No. Site Latitude Longitude 

1. Sainik farm 1 29° 2' 6.59" N 79° 25' 13.50" E 

2. Sainik farm 2 29° 2' 3.18" N 79° 25' 18.17" E 

3. PCP 29° 0' 55.65" N 79° 29' 25.64" E 

4. Beni 29° 1' 1.80" N 79° 30' 4.78"  E 

5. Near Fisheries College 29° 1' 11.50" N 79° 30' 20.80" E 

 

 

 

 

growth of crops depend are mainly weather, soil and 

management variables, which change considerably across 

space. Dadhwal (2005) used the above information into 

crop simulation models in various ways, such as for 

recalibrating particular parameters, for direct forcing of 

variables or differences in simulation-observation to 

correct yield estimates. The present study aims at 

development of spectral model for analyzing rice growth 

and yield attributes by taking plant observations during 

satellite pass and thereafter applying the spectral model at 

the district level for yield prediction by integrating 

Sentinel 1-A satellite Synthetic aperture radar data with 

the DSSAT (CERES- RICE) model. 

 

2. Materials and methods 

 

2.1. Study area and data description  

 

The study area was Udham Singh Nagar district 

which is located in the Terai region, of Uttarakhand state. 

It extends from 28 53' to 29 23' N latitudes and 78 45' 

to 80 08' E longitudes. This district of Uttarkhand state is 

the leading producer of rice and wheat. The prominent 

cropping system in this area is Rice-Wheat due to this the 

investigation was done at five different locations namely 

Sainik farm 1 and 2, PCP, Beni and Near Fisheries 

College over the campus of GBPUAT, as shown in             

Table 1. 

 

The ground truth observations were taken at an 

interval of 12 days from July 25 to October 10. There 

were four observations, viz., growth stages of rice, density 

of plants in the field, height of the plants, and general 

information related to field management, which was taken 

from a plot size of 1 m2. By taking 5 samples at random 

within a plot, the above ground biomass of stems, (green + 

dead) leaves and ears were quantified individually. 

Ceptometer LP-80 was used to assess LAI over the course 

of the study. At the time of rice harvesting, information on 

actual rice production in the district was gathered. 
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Fig. 1. Rice yield mapping scheme based on Senitnel-1A SAR data and DSSAT CERES-RICE 

 

 

 

TABLE 2 

 

Impression of Sentinel-1A SAR images and rice growth stages at each acquisition date 

 

Date of Acquisition Polarization Pass Spatial resolution Incidence angle Rice Growth stage 

25-26 Jul, 2017 VV/VH Descending 5 × 20 m 29.1° to 46.0° Early stage 

18-19 Aug, 2017 VV/VH Descending 5 × 20 m 29.1° to 46.0° Mid stage 

11-12 Sep, 2017 VV/VH Descending 5 × 20 m 29.1° to 46.0° Reproductive/Grain filling stage 

 

 

 

 

The daily weather data that were used in the study 

were acquired for the year 2017 from the 

Agrometeorological observatory located at Crop Research 

Centre, G. B. Pant University of Agriculture and 

Technology. The quantity of insolation available at 

Pantnagar was estimated using weather data such as 

temperature (maximum and minimum), rainfall and Bright 

Sunshine Hours (BSS). Three Sentinel-1A SAR products 

were used to monitor the rice season in 2017, as indicated 

in the Table 2. 

 

2.2. The rice yield mapping system based on 

Senitnel-1A SAR data and DSSAT (CERES- 

RICE) 

 

The complete mapping of rice yield using SAR data 

procedure was broken into two phases. The first phase 

involved creating a rice distribution map of Udham Singh 

Nagar district using a mapping method and employing 

Sentinel-1A SAR data. The mapping was done by using 

the SVM (Support Vector Machine) supervised 

classification technique which identify the class associated 

with each pixel. From complex and noisy data SVM 

derives satisfying classification results. SVM is a 

supervised classification system which is based on 

statistical learning theory it basically separates the classes 

by making a decision surface which maximizes the margin 

between the classes. This surface is called as optimal 

hyper plane and the points which are very closest to the 

hyper plane are called as support vectors these support 

vectors are main elements of the training set. The mapping 

tool which was used in this study is ENVI - 4.8 

(Environment for Visualising Images). The rice map 

created by mapping was used to mask the Sentinel - 1A 

SAR images in order to identify the rice fields and get the 

backscattering coefficients. The backscattering 

coefficients which correspond to each rice pixel in the rice 

map have been grouped for each polarization.  

 

The implementation of an assimilation approach to 

estimate the rice yield for each rice pixel is the second 

phase of this study. The observed rice backscattering 

coefficients were utilized to re-initialize the crop growth 

simulation  model  CERES - RICE  using the assimilation  

Multi-temporal, multi-polarized 

Sentinel-1A SAR data 
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CERES- RICE 

Supervised Classification (Support 

vector machine) 
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Masking 
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Rerun Model 
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Grouping of corresponding 

backscattering coefficients with each rice 
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Fig. 2. Backscatter statistics of different land cover classes 

 

 

 
 

Fig. 3. Classified image of Udham Singh Nagar district 

 

 

 

method (Bouman et al., 2001). The CERES-RICE model 

was merged with the rice backscatter model during 

assimilation, with LAI serving as a crucial connection to 

simulate rice backscattering coefficients. The assimilation 

method re-initializes the model with appropriate input 

parameters, allowing for a promising temporal link 

between the observed and simulated rice backscattering 

coefficients. After the re-initialization process was 

completed, the rice yield map of Udham Singh Nagar 

district was created by computing the crop yield 

associated with each rice pixel in the CERES-RICE 

model. The most significant stage in SAR image 

processing is calibration, which is performed by a 

calibration operator provided by the European Space 

Agency (ESA) in Sentinel's Application Platform (SNAP) 

to extract backscattering values of the relevant pixels. The 

refined Lee speckle filter, which is based on lowest mean 

square error, was employed to reduce the speckle noise. 

The terrain was then corrected using a Range Doppler 

Terrain Correction method provided in ESA’s SNAP. The 

scheme of rice yield mapping and its integration with 

CERES RICE model is illustrated in Fig. 1, the technique 

of integrating Sentinel-1A SAR data with the crop 

simulation model for rice yield prediction is based on 

multi-temporal and multi-polarized Sentinel-1A SAR 

data. The input files which are required for running the 

model were weather file, soil file and management file. 

The weather file was constructed by integrating several 

meteorological parameters such as temperature (maximum 

and minimum), precipitation and solar radiation. The soil  
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TABLE 3 

 

Genotype coefficients of five different rice cultivars 

 

Symbol  Description  Genetic Coefficients of varieties 

  HKR-47 PR-121 Pant-4 HKR-47 HKR- 47 

P1 Time period (expressed as growing degree days [GDD] in °C above a base 

temperature of 9 °C) from seedling emergence to the end of juvenile phase 

during which the rice plant is not responsive to changes in photoperiod. This 

period is also referred to as the basic vegetative phase of the plant 

1150 

 

850 

 

880 

 

1150 

 

1150 

 

P2R Extent to which phasic development leads to panicle initiation is delayed 

(expressed as GDD in °C) for each hour increase in photoperiod above P2O 

50 

 

20 

 

45 

 

50 

 

50 

 

P2O Critical photoperiod or longest day length (in hours) at which the development 

occurs at maximum rate. At values higher than P2O the development rate is 

slowed (depending on P2R), there is delay due to longer day length 

11.4 

 

12.1 

 

11.4 

 

11.4 

 

11.4 

 

P5 Time period in GDD in °C from beginning of grain-filling (3 - 4 days after 

flowering) to physiological maturity with a base temperature of 9 °C 
300 

 

550 

 

450 

 

300 

 

300 

 

G1 Potential spikelet number coefficient as estimated from the number of spikelets 
per g of main culm dry weight (less lead blades and sheaths plus spikes at 

heading. A typical value is 55 

40 

 

50 

 

40 

 

40 

 

40 

 

G2 Single dry grain weight (g) under ideal growing conditions, i.e., non limiting 

light, water, nutrients, and absence of pests and diseases 

0.025 

 

0.028 

 

0.01 

 

0.025 

 

0.025 

 

G3 Tillering coefficient (scalar value) relative to IR64 cultivars under ideal 

conditions. A higher tillering cultivar would have coefficient greater than 1 

2 

 

0.5 

 

2 

 

2 

 

2 

 

G4 Temperature tolerance coefficient. Usually 1.0 for cultivars grown in normal 

environment.G4 for japonica type rice grown in warmer environments would be 

1.0. Tropical rice grown in cooler environments or season will have G4 < 1.0 

1 

 

1 

 

0.8 

 

1 

 

1 

 

PHINT Phyllochron interval 70 83 83 70 70 

 

 

 

file includes the information related to soil structure, 

texture, bulk density, upper drained limit, lower drained 

limit, mineral, nitrogen, pH, EC, organic carbon, and other 

data which were gathered from published literature to 

generate the soil file. Actual information from the 

representative fields like cultivar, planting dates, 

harvesting dates, irrigation information, and fertilizer 

dosage were used to construct the management file. To 

find out the degree of coincidence between the observed 

yield and the simulated coupled yield, the Root Mean 

Square Error (RMSE) method was used so that the 

statistical evaluation and validation of the outcomes could 

be done.  

 

3. Results and discussion 

 

There were two phases adopted for the integration of 

Sentinel-1A SAR data into the rice growth simulation 

model. The initial phase in estimating rice yield was 

achieved through image classification and rice area 

estimation. The rice map of the zone of study has been 

derived in our previous study using the support vector 

machine method classification (Bhatt et al., 2018), with a  

 
 

Fig. 4. Variations in observed LAI 

 

 

rice mapping accuracy of 92.88%. The backscatter 

statistics of different land cover classes showing average 

backscatter for VH (𝜎0VH) and VV (𝜎0VV) polarisation 

as shown in Fig. 2, with a classified map of Udham Singh 

Nagar is shown in Fig. 3. 
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Fig. 5. Observed and simulated LAI for different Experimental Sites 

 

 

 

The second phase was adjustment (calibration) of 

genotype coefficients of the rice cultivars by comparing 

simulated LAI with observed LAI of different fields. 

During the process of fine tuning or adjustment of the rice 

cultivars, the actual management file used as an input in 

the model, so that the genotype coefficients could 

precisely be adjusted. As, indicated in Table 3, field level 

production was calculated using the fine-tuned genotype 

coefficients. 
 

The variations in observed LAI measured across five 

distinct fields using ceptometer at three crucial stages of 

rice (early, mid, and reproductive). The LAI of the rice 

plant  increases  with  the  increase in its growth. The LAI  



 

 

BHATT and NAIN : CERES-RICE MODEL FOR REDICTING RICE YIELD IN UDHAM SINGH NAGAR  

655 

TABLE 4 

 

 CERES-Rice simulated LAI and observed LAI 

 

Place Date Observed LAI  Simulated LAI  RMSE (%) 

Sainik farm 1 

25/7/2017 0.55 0.78 

24.30 17/8/2017 2.16 2.86 

12/9/2017 3.47 3.91 

Sainik farm 2 

25/7/2017 1.51 0.62 

20.50 17/8/2017 3.18 3.00 

12/9/2017 3.55 3.20 

PCP 

25/7/2017 0.18 0.25 

14.40 17/8/2017 1.48 1.70 

12/9/2017 3.35 3.00 

Beni Field 

25/7/2017 3.19 1.80 

22.10 17/8/2017 4.75 4.33 

12/9/2017 4.75 4.020 

Near Fisheries 

College 

25/7/2017 2.09 2.30 

11.70 17/8/2017 3.63 4.09 

12/9/2017 4.16 3.72 

 
 

 

 

 

increases rapidly from the early to mid-stage but then 

slows as the crop progresses to the reproductive stage for 

the five distinct fields are shown in Fig. 4. This is because 

the crop's initial foliar sections receive more food material 

partitioning, whereas reproductive organs are preferred 

over other parts of the plant in the later stage (Irving, 

2015). 

 

The 12 day repeat cycle of Sentinel-1A data satisfies 

the temporal resolution which is a need for this study and 

is very helpful in obtaining the biophysical parameters. 

The variance in crop LAI from field to field can be 

attributed to varied sowing dates, management practices, 

and cultivars. Because the crop in PCP and Sainik farm-1 

was planted late, the LAI values in these two fields were 

low throughout the growth cycle when compared to other 

fields, as shown in Fig. 5 which depicts the temporal 

variation in LAI obtained from ground data and simulated 

observations for five different fields. 

 

The integration of the crop simulation model 

CERES-Rice with SAR data was a key goal of the current 

study. To achieve this goal, the simulated LAI was 

compared with the observed LAI for fine tuning of the 

model. The fine-tuning of a genotype coefficient is a 

critical stage in the integration of remote sensing and crop 

simulation models. On numerous occasions, the 

effectiveness of remote sensing (both optical and passive) 

in obtaining LAI has been established (Manninen et al., 

2005, Zheng and Moskal 2009, Jin et al., 2015). It has 

been envisaged in the study that if the LAI of crop 

simulation model matches well with observed LAI, the 

model can be used to predict district level rice yield. The 

temporal trend of the LAI was matched using varied 

sowing dates and further reduced using varied fertilizer 

doses. The water management in the model has been kept 

automatic as the district of Udham Singh Nagar receives 

plenty of rainwater with good irrigation facilities. The area 

has gross irrigated area of 248470 ha which covers more 

than 90% region (Directorate of Economics & Statistics, 

Ministry of Agriculture, Govt. of India). The fine tuned 

genotype coefficients of five different rice cultivars have 

been listed in Table 3. 

 

The LAI simulated by the CERES-Rice model 

matched with observed LAI for 3 dates over five 

experimental plots are shown in Table 4. The comparison 

of observed and simulated LAI reveals that during the 

early stage of the crop, observed LAI values were 

relatively low compared to simulated LAI, however by the 

late stage of the crop, observed LAI values were reported 

more than simulated LAI. In comparison to simulated 

LAI, the observed LAI values of the Beni field were 

greater throughout the crop season. The RMSE between 

observed and simulated LAI varied between 11.7 and 24.3 

percent. The RMSE value of the Beni field was much 

greater because the variety HKR-47 produced 

extraordinarily high LAI values that could not be picked 

by any combination of genotype coefficients. 

 

As stated by Shen et al. (2009) during the re-

initialization of the ORYZA 2000 model using the 

assimilation approach, the RMSE between simulated and 

observed LAI was less than 20.00% and may be deemed 

reasonably excellent. The ORYZA 2000 outputs were 

compared to in-field data collected over 10 fields in 

Jiangsu Province, China. With an RMSE of 12.20 percent, 

it was also discovered that the estimated rice yield was 

often higher than the measured rice production.  

 

The observed and simulated coupled yields were 

found to be quite close. The measured rice yield in Sainik 

Farm 1 was 2582 kg/ha, while the simulated coupled yield 

was 2094 kg/ha, a discrepancy of 488 kg/ha. The 

measured rice yield for Sainik Farm 2 was 6129 kg/ha, 

while the simulated coupled yield was 6097 kg/ha, a 32 

kg/ha discrepancy. The observed and simulated coupled 

yield for the PCP field were 1522 and 1458 kg/ha, 

respectively, with a 64 kg/ha difference. The measured 

yield of the Beni field was 3270 kg/ha, while the 

simulated coupled yield was 3244 kg/ha, representing a  

26 kg/ha discrepancy. The observed yield of the field near 

the  fisheries  college was 2934 kg/ha, while the simulated  
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TABLE 5 

 

Comparison of observed and coupled yield 

 

Place 
Observed Yield  

Kg/ha 

Coupled Yield 

kg/ha 

RMSE 

(%) 

Sainik farm 1 2582 2094 

7.61 

Sainik farm 2 6129 6097 

PCP 1522 1458 

Beni Field 3270 3244 

Near Fisheries College 2934 3198 

 

 

 

 

TABLE 6 

 

SAR retrieved LAI and Coupled LAI 

 

Dates SAR retrieved LAI Coupled LAI RMSE (%) 

25/7/2017 1.97 1.44 

22.1 17/8/2017 2.47 3.26 

12/9/2017 3.05 3.14 

 

 
TABLE 7 

 

Coupled model and observed yield with yield difference 

 

District name 
Observed yield (kg/ha)               

(based on past five years average) 

Coupled model Yield 

(kg/ha) 

Difference in yield            

(kg/ha) 

Udham Singh Nagar 3160 3190 30 

 

 

 

 

 

coupled yield was 3198 kg/ha, resulting in a yield 

differential of 102 kg/ha. For varied fields, the RMSE 

between observed and coupled yield was determined to be 

7.61 percent as shown in Table 5. Pazhanivelan et al. 

(2022) used an approach of integrating Sentinel-1A SAR 

data with the CERES-RICE model to estimate rice yield in 

Tamil Nadu's Cauvery delta districts, where they found an 

RMSE of less than 10.00%, indicating good agreement. 

 

It was observed that the simulated coupled yield was 

higher at various experimental sites. This overestimation 

may be contributed to non-consideration of pests and 

disease attack on the rice crop which led to reduced yield. 

In a few situations, the simulated coupled yield was lower 

than the real yield because the partitioning coefficients 

that vary from one phenological stage to the next could 

not be fine-tuned well. 

 
 

Fig. 4. Rice Yield Map of Udham Singh Nagar 
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This calibrated model was utilised to generate 

district-level LAI and the results were validated by 

comparing model-simulated LAI to SAR-retrieved LAI. 

The calibrated and validated model could now be 

combined with LAI obtained from the Sentinel-1A image 

to determine the yield for the Udham Singh Nagar district. 

In Table 6, simulation model's coupled LAI was matched 

with the mean values of LAI extracted from Sentinel-1A's 

multi-date images for the Udham Singh Nagar district.  

 

The above table shows that the SAR retrieved LAIs 

were quite close to the coupled model with an RMSE of 

22.1%. The yield generated by the coupled model is 

shown in Table 7, which is the representative yield of 

Udham Singh Nagar. 

 

For the year 2017, the yield derived from the coupled 

model for Udham Singh Nagar was 3190 kg/ha. The 

average observed yield over the last five years, however, 

was 3160 kg/ha. The observed-coupled yield difference 

was 30 kg/ha, which is quite small. The CERES-Rice 

model is a lively, eco-physiological rice crop model that 

stimulates rice growth and development under situations 

of potential production, water stress, and nitrogen stress 

(Hussain et al., 2018). The daily calculation scheme is 

used in this model for the dry matter production rates and 

plant organ rates, as well as the rate of phenological 

development from emergence to harvest. The dry matter 

production of rice is simulated throughout the growth 

season by integrating these rates across time, and the final 

yield is computed (Tang et al., 2009). The semi-empirical 

rice backscatter model was calibrated and combined with 

CERES RICE to simulate VV/VH-polarized rice 

backscattering coefficients in order to create a district-

wide rice yield map, as shown in Fig. 4. 

 

4.  Conclusion 

 

When little in-situ information or inadequate optical 

data are available due to high clouds during a rice season, 

the system outlined in this article provides a feasible 

technique for using Sentinel-1A SAR data for regional 

rice yield prediction. The outcomes of the study showed 

that field level rice yield estimated through coupled 

approach ranged from 1458 kg/ha to 6097 kg/ha, while 

observed yield ranged from 1522 kg/ha to 6129 kg/ha. 

The RMSE computed between the yield generated by 

coupled model and the observed yield was 7.61%. The 

coupled model was also used to predict the district level 

rice yield. The yield generated by coupled model was 

3190 kg/ha that was quite close to the average observed 

five year yield which was around 3160 kg/ha. This shows 

that coupled approach could be a reliable option for rice 

yield prediction. Though the above approach needs to be 

validated in different rice planting locations with varied 

SAR configurations, the current study is simply the first 

step in the direction of retrieving more and more crop 

biophysical characteristics using SAR data and replacing 

the model produced assimilates. As a result, further work 

should be devoted to improving the models and evaluating 

the system over longer series of data and across other 

sites. Therefore, we conclude that the integration of SAR 

data with CERES RICE model can be suggested to 

estimate the rice yield spatially.  
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