

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

विसरित सौर (आकाशीय) विकिरण के प्रयोग और सुरक्षा के लिए अनुदेश

INSTRUCTIONS FOR THE USE AND CARE OF DIFFUSE SOLAR (SKY) RADIATION.

> उपकरण विभाग मौसम कार्यालय, पूना-5

INSTRUMENTS SECTION METEOROLOGICAL OFFICE, POONA-5

GOVERNMENT OF INDIA

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

विसरित सौर (आकाशीय) विकिरण के प्रयोग और सुरक्षा के लिए अनुदेश

INSTRUCTIONS FOR THE USE AND CARE OF DIFFUSE SOLAR (SKY) RADIATION.

> उपकरण विभाग मौसम कार्यालय, पूना-5

INSTRUMENTS SECTION METEOROLOGICAL OFFICE, POONA-5

भारत मौसम विज्ञान विभाग विसरित सौर विकिरण (आकाशीय) का मापन

अनुक्रमणिका

		पृष्ठ र
1.	प्रस्तावना	1
2.	सामान्य सिद्धान्त	1
3.	यंत्र का वर्णन	1
4.	स्थान का चुनाव	2
5.	स्थापना	2
6.	विद्युतीय संबंधन	3
7.	यंत्र के स्थिरांक	3
8.	छाया मुद्रिका संशोधन गुणक	4
9.	संक्रिया और देखभाल	5
10.	आंकड़ों का सारणीकरण	5
11.	अनुसंशोधन	5
	सारणी सं - 1 चित्रों की तालिका	6
1.	छाया मुद्रिका के साथ पाइरानोमीटर (शुप मॉडल)	7
2.	छाया मुद्रिका व्यवस्था	8
3.	छाया मुद्रिका की स्थापना	9
4.	विद्युतीय संबंधन	10
5.	छाया मुद्रिका संशोधन - गुणक	11

विसरित सौर (आकाशीय) विकिरण का मापन

- प्रस्तावना 1.1 विसरित सौर विकिरण सूर्य से निकलने वाली सूक्ष्म तरंग ऊर्जा का एक घटक है जो वायुमण्डल में वर्तमान गैस कणों, जलवाष्प और बादलों से प्रकीर्ण और विसरित होकर नीचे पृथ्वी तल की ओर आती है। स्वच्छ आकाश में यह मुख्यतः सूर्य के उन्नयन (Elevation) वायुमण्डल की प्रक्षोभ (Turbidity) जलवाष्प की मात्रा तथा पाठयांक लेने वाली वेधशाला के अक्षांश और समुद्रतल से इसकी ऊंचाई पर निर्भर करती है। जब आकाश में बादल हों तो विसरित घटक की मात्रा एक स्थान विशेष पर प्रतिदिन प्रतिघंटे बदलती रहती है और यह बदलाव मुख्यतः उस स्थान पर बादलों की मात्रा और उनकी किस्मों के बदलते रहने के कारण होता है।
- 1.2 किसी एक क्षेत्र के विकिरण—जलवायु विज्ञान (Radiation Climatology) को भलीभाँति समझने के लिए विकिरण के सम्पूर्ण अवयवों का ज्ञान आवश्यक है। दिन के प्रकाश की प्रदीप्ति (Illumination) तथा विकिरण के अन्य अवयवों के मापन की सुविधा जहां नहीं है वहां पर विसरित सौर विकिरण का मापन एक अतिरिक्त मापन के रूप में होता है। विसरित विकिरण के मापन की आवश्यकता प्रदीप्ति अभियन्ताओं और वास्तुविदों को आन्तरिक प्रदीप्ति ज्ञान और भवन निर्माण शोध में विशेष रूप से ऊष्ण कटिबन्ध में तथा सौर ऊर्जा के उपयोगों के लिए पड़ती है।
- 2. सामान्य सिद्धान्त— पाइरानोमीटर (सोलारीमीटर) से नापा गया भूमंडलीय सौर विकिरण, सीधे सौर विकिरण और विसरित (आकाशीय) विकिरण का योग है जबिक दोनों घटक पृथ्वी तल के समानान्तर तल पर पड़ रहे हों। विसरित सौर विकिरण के अकेले मापन के लिए, सीधे सौर विकिरण को अभिग्राही पर पड़ने से रोकने की व्यवस्था अवश्य होनी चाहिए। सीधे सौर विकिरण को अभिग्राही से स्क्रीन कर देना चाहिए एक ऐसी घड़ी चालित डिस्क द्वारा जो आकाश में सूर्य के चलन की अनुगामी हो अथवा एक अर्धवृतीय छायाकारी वलय (Ring) द्वारा जिसको ध्रुवीय अक्ष पर स्थापित किया गया हो।

ग्राही तल पर छाया करने की उपरोक्त व्यवस्थाएं जिसमें छाया को सूर्य के दृष्ट-गति का अनुगामी बनाया जा सके और विसरित विकिरण लगातार अभिलेखित होता रह, आसान नहीं है और यदि किसी प्रकार यह व्यवस्था कर भी ली गई तो इसकी यांत्रिक व्यवस्था जटिल होगी और इसकी लगातार देखभाल करनी होगी, जिससे यह यंत्र अविरल, त्रुटिहीन काम करता रहे और भ्रामक अभिलेखन को बचाया जा सके जो यदि किसी प्रकार हो गया तो बाद में पता लगाना कठिन होगा। छाया वलय विधि में व्यक्तिगत ध्यान की आवश्यकता अपेक्षाकृत कम पड़ती है परन्तु इस व्यवस्था से लिए गये मापों में संशोधन की आवश्यकता पड़ती है क्योंकि छाया वलय से ग्राही तल पर पड़ने वाले विसरित विकिरण में रुकावट पड़ती है और आकाश से विसरित विकिरण की एक अगम्य (Appreciable) मात्रा को, यह वलय (Ring) छतरी का काम करके ग्राही तल पर पड़ने से रोक देती है।

यंत्र का वर्णन-

- 3.1 आकाशीय विसरित विकिरण के सतत पंजीकरण के लिए प्रयोग में आने वाला यंत्रीय उपकरण भी उसी प्रकार का होता है जैसा एक समतल सतह पर पड़ने वाले सम्पूर्ण सौर विकिरण के पंजीकरण के लिए उपयोग में लाया जाता है जैसे मोलगोरजीन्स्की पाइरानोमीटर और कैम्ब्रिज सूत्र (Thread) रिकार्डर (संदर्भ—आई.एस.सर्कुलर नं. 45 पृष्ठ 3 से 6) जिसमें ताप—वैद्युत पुंज अवयव (Thermopile Element) और शीशे के दो अर्धगोलाकार गुम्बद (Dome) को सूर्य के सीधे विकिरण से बचाने के लिए शुप माडल (Schuepp Model) की छाया मुद्रिका लगी होती है। (चित्र संख्या—1)। छाया मुद्रिका यंत्र के ऊपर इस प्रकार लगी होती है कि इसका तल और सूर्य के आकाश में दैनिक मार्ग का आमासीय पथ का तल एक ही हो और यह मुद्रिका ताप—वैद्युत पुंज (Thermopile) को इसके गुम्बद (Dome) के साथ पूरे दिन छाया प्रदान करती रहे और पाइरानोमीटर को आकाश से केवल विसरित विकिरण प्राप्त करने का अवसर देती रहे। अपने दो समानान्तर आधार वाले छड़ों पर यह मुद्रिका ऊपर नीचे इस प्रकार चलाई जा सकती है कि सूर्य के दिग्पात के साथ जब ऋतु परिवर्तन हो तब भी आकाश (Space) में इसका तल परिवर्तित न हो। छाया मुद्रिका के मध्य में पाइरानोमीटर इस प्रकार लगा होता है कि मुद्रिका से इसकी औसत दूरी पूरे साल एक सी बनी रहे।
- 3.2 छाया मुद्रिका— छाया मुद्रिका के बनावट की विस्तृत जानकारी चित्र 2 में दिखाई गई है। ABCD 35 X 80 से.मी. के लौह कोण (Angle iron) का एक आयताकार ढांचा है। इस ढांचे की भुजा AB और CD पर लौह कोण की दो और भुजाएं EF और GH

लगी है। जिनमें लम्बाई के साथ—साथ खांचा (Slot) कटा हुआ है। इस खांचे (Slot) में दो स्लाइडर (Slider) S और S लगे हुए हैं और इन स्लाइडर (Slider) के ऊपर अर्धवृत्ताकार छाया मुद्रिका R लगी हुई है। भुजा EF और GH ऐसी धुरी पर लगी हुई हैं जो आयताकार ढांचा ABCD के चौड़ाई की भुजाओं के मध्य से, लम्बाई के समानान्तर है। EF और GH को, समतल (Horizontal) में आवश्यकतानुसार किसी भी कोण पर लगाया जा सकता है। भुजा EF और GH को इस प्रकार व्यवस्थित करना पड़ता है कि समतल स्केल पर नापा गया कोण उस स्थान के अक्षांश के बराबर हो। भुजा EF और GH पर छाया—मुद्रिका को ऊपर—नीचे खिसकाकर, ऋतुओं के साथ सूर्य के दिग्पात् के अनुसार व्यवस्थित (Set) किया जा सकता है। भुजा EF और GH पर पीतल की स्केल S लगी है जिस पर सूर्य के दिग्पात् कोण अंकित होते हैं। इसके अनुसार छाया मुद्रिका को सूर्य के अदृश्य होने पर भी नित्य व्यवस्थित किया जा सकता है।

छाया मुद्रिका R एल्यूमीनियम की बनी होती है जिसकी चौड़ाई 50 मि.मी. होती है और यह अर्धवृत्त के रूप में मुड़ी होती है जिसका अर्धव्यास 450 मि.मी. होता है। छाया मुद्रिका के अन्दर का तल हल्के काले रंग से रंगा होता है और शेष तल सफेद रंग से। ढांचे ABCD के निचले तल पर धातु की एक मोटी पट्टी P लगी होती है जिसमें गोल खांचा (Slot) कटा होता है। ढांचे को सीमेंट के चबूतरे पर एक बार लगा देने के बाद इस खांचे (Slot) की सहायता से इसे दिगंश में समायोजित किया जा सकता है। ढांचे के ऊपरी तल में धातु की एक अन्य पट्टिका P लगी होती है जिस पर पाइरानोमीटर को आरोपित किया जा सकता है।

4. स्थान का चुनाव

4.1 पाइरानोमीटर— भू—मण्डलीय (Global) पाइरानोमीटर की तरह विसरण (diffuse) पाइरानोमीटर के लिए भी निम्न शर्तों की पूर्ति आवश्यक है जैसे 360° का अनतरुद्ध दिगंशत, तथा किसी बड़े मकान के ऊंचे समतल छत पर सीमेंट का एक चबूतरा या खम्भा उपलब्ध होना चाहिए जिसके आस—पास कोई दूसरा ऊंचा मकान या ऊंचा पेड़ न हो जो वायुमण्डलीय विकिरण को वायुमण्डल के किसी भाग से यंत्र पर पड़ने से रोक सके। स्थान का चुनाव करते समय इन बातों को ध्यान में रखना चाहिए। इसके साथ ही साथ यह भी आवश्यक है कि यंत्र की देखभाल और समायोजन निश्चित अन्तराल पर होता रहे।

भूमण्डलीय और विसरण पाइरानोमीटर एक दूसरे के निकट लगाए जा सकते हैं लगभग एक मीटर की दूरी पर और विसरण—यंत्र भू—मण्डलीय यंत्र से ध्रुवों की ओर होना चाहिए जिससे आपसी व्यतिकरण (mutual intenpehence) न्यूनतम हो और भू—मण्डलीय यंत्र पर पड़ने वाले सम्पूर्ण विकिरण का एक प्रतिशत से अधिक भाग विसरण यंत्र की छाया मुद्रिका द्वारा अवरुद्ध न हो।

- 4.2 अभिलेखी (Recorder) यमल परिपथ कैंब्रिज सूत्र अभिलेखी (Twin circuit cambridge thread recorder) के दो प्रणायों (channel) में से, एक को, जो भू—मण्डलीय विकिरण के अभिलेखन के लिए प्रयुक्त होता है, विसरित विकिरण के अभिलेखन के लिए प्रयुक्त होता है, विसरित विकिरण के अभिलेखन के लिए प्रयोग किया जा सकता है। अभिलेखी को स्थपित करने के लिए उपयुक्त स्थान के चुनाव के लिए आवश्यक आवश्यकताओं की जानकारी आई.एस. सर्कुलर नं. 45 के पृष्ठ 4 पर दी हुई है।
- 5. स्थापना— पाइरानोमीटर के साथ छाया मुद्रिका व्यवस्था की स्थापना के लिए 35 से.मी. की एक वर्गाकार समतल क्षैतिज प्लेटफार्म की आवश्यकता होती है। एक 2.5 मि.मी. लौह कोण के फ्रेम को 35 से.मी. वर्गाकार सीमेंट—कांक्रीट के प्लेट फार्म पर स्थापित किया जाता है। लौह कोण के ढांचे की हर भुजा के मध्य में एक चूड़ीदार बोल्ट लगा होता है, जिसका चूड़ीदार सिरा ऊपर की ओर होता है। अब छाया मुद्रिका व्यवस्था के आयताकार ढांचे ABCD को, जिसमें से ऊपर लगी धातु की पट्टी P को निकाल दिया गया हो चबूतरे के ऊपर इस प्रकार रखते हैं कि चबूतरे पर लगे लम्बवत् वोल्ट, ढांचे के नीचे लगे धातु पत्र के गोल छेद में से होकर निकल जाए, जैसा चित्र 3 में दिखाया गया है। अब ढांचे को इस प्रकार व्यवस्थित किया जाता है कि उसकी छोटी भुजाएं ठीक उत्तर—दक्षिण दिशा में हों। ढांचे की छोटी भुजाओं को ठीक उत्तर—दक्षिण दिशा में रखने के लिए प्रिज्मैटिक कम्पास की सहायता ली जा सकती है। दिगंश समायोजन की शुद्धता की जाँच यह देख कर की जा सकती है कि यंत्र के स्थापना के बाद, सूर्योदय और सूर्यास्त के आसपास, छाया मुद्रिका की छाया अभिग्राही पर समित (Symmitrical) है या नहीं। ढांचे को चार नट—बोल्ट से कस दिया जाता है और फिर इस बात की जांच कर लेते हैं कि ढांचा क्षैतिज है या नहीं। अब ढांचे की ऊपरी पट्टी P को इसकी जगह पर लगा कर कस देते हैं छाया मुद्रिका के ढांचे की भुजाओं EF और GH को क्षितिज के साथ उस स्थान के अक्षांश कोण के बराबर के कोण पर

रखते हैं। अब पाइरानोमीटर को ऊपर की धातु प्लेट के बीच में, प्लेट के नीचे लगे हुए धातु के वॉशरों का प्रयोग करके इस प्रकार लगाते हैं कि पाइरानोमीटर के अभिग्राही तल की ऊंचाई, छाया मुद्रिका के साथ सही–सही व्यवस्थित की जा सके।

पाइरानोमीटर के सिरे रोधी—तंतु आस्तीन के अन्दर बन्द होते हैं और पोर्सिलीन अनुयोजक (Connector) के एक सिरे से सम्बद्ध होते हैं जिनको पैराफिन मोम से बन्द कर दिया जाता है। पोर्सिलीन अनुयोजक का दूसरा सिरा एक केबिल से सम्बन्द्ध होता है। जो अभिलेखी से जुड़ा होता है। तली में लगी पोर्सिलीन अनुयोजक के साथ पाइरानोमीटर को, अब आरोपण पट्टिका पर रखते हैं और पीतल के नट—बोल्ट से उसे कस देते हैं। नट—बोल्ट को थोड़ा ढीला रखते हैं जिससे पाइरानोमीटर को बाद में समतल करने में सुविधा रहे। पाइरानोमीटर को इस प्रकार रखा जाना चाहिए कि ताप वैद्युत पुंज की लम्बी भुजा उत्तर दक्षिण की दिशा में रहे। दिगंश से ताप वैद्युत पुंज की सुग्राहिता—परिवर्तन को न्यूनतम रखने के लिए यह समायोजन आवश्यक है। पुणे में आरोपण पट्टिका के ऊपर पाइरानोमीटर को इस स्थिति में पहले ही संरेखित कर दिया जाता है। अब समतलन पेचों और स्पिरिटलेवेल की सहायता से पाइरानोमीटर के सुग्राही तल को ठीक से समतल कर देते हैं। अब पीतल के बोल्ट को ठीक से कस देते हैं।

सिलिका जेल का एक पात्र एक पेच से पाइरानोमीटर के तल में लगा होता है। अब गोल-रक्षक पट्टिका को यथास्थान रखकर इसके तीन आधार स्तम्भों पर पेच से कस देते हैं। पाइरानोमीटर के सापेक्ष, मुद्रिका की सही ऊंचाई का व्यवस्थापन ऐसा होता है कि विषुवत (Equino) पर मुद्रिका का केन्द्र और पाइरानोमीटर के ग्राहीतल का केन्द्र संपाती (Coincide) होते हैं। ध्रुवीय कक्ष की भुजाएं EF और GH जिस पर मुद्रिका सरकती है, को स्थानीय अक्षांश के झुकाव पर व्यवस्थापित करने के बाद मुद्रिका R को भुजाओं पर खिसका कर ग्राहीतल को छाया मुद्रिका के किनारों के ठीक मध्य में व्यवस्थापित करते हैं। अब यह सुनिश्चित करते हैं कि पाइरानोमीटर के ग्राहीतल का केन्द्र मुद्रिका के केन्द्र के साथ संपाती हो। अगर आवश्यक हो तो मुद्रिका के सापेक्ष पाइरानोमीटर की ऊंचाई को भी समायोजित करके ग्राहीतल और मुद्रिका के केन्द्रों को संपाती कर लेना चाहिए।

पीतल के स्केल, जिस पर सूर्य का दिग्पात् अंकित होता है, दोनों भुजाओं पर इस प्रकार समायोजित की जाती है कि मुद्रिका स्केल के शून्य (0°) के अंक के साथ हो। अन प्या मुद्रिका को इस प्रकार समायोजित करते हैं कि छाया, ताप वैद्युत पुंज और कांच के सम्पूर्ण बाहरी गुम्बद पर पड़े। सूर्य के दिग्पात् के साथ मुद्रिका को प्रतिदिन पुनः नियोजित कर लेना चाहिए।

6. विद्युतीय सम्बन्धन— सभी विद्युतीय सम्बन्धन चित्र 4 में दिखाये गये हैं। सूत्र अभिलेखी के तल में एक अन्तस्थ खण्ड (Terminal Block) लगा होता है। यहां से उपयुक्त लम्बाई का एक मौसम सह केबल (weatherproof) 3/029 एक पोर्सलीन संबंधक से होता हुआ पाइरानोमीटर से जुड़ता है। भू—मण्डलीय और विसरित दोनों ही पाइरानोमीटर के अभिलेखण एक साथ प्राप्त करने के लिए साधारणतया एक द्विसूत्रीय अभिलेखी का प्रयोग किया जाता है। अभिलेखी में लगी एक स्विचन क्रिया विधि धारामापी को स्वतः एक से दूसरे परिपथ में जोड़ती है और सूत्र को भी इस प्रकार स्थानान्तरित करती है कि भू—मण्डलीय और विसरित दोनों ही विकिरण एक मिनट के अन्तर पर दो अलग—अलग रंग के सूत्रों पर (काला और लाल) अभिलेखित होते रहते हैं। जब अभिलेखी केवल भू—मण्डलीय पाइरानोमीटर से जुड़ा होता है तो इसके सिरे अभिलेखी के तल में लगे अन्तस्थ के नम्बर 5 और 6 से जुड़ते हैं और अन्तस्थ 4 और 6 लघुपथ हो जाते हैं। अब अन्तस्थ 4 और 6 की लघुपथ (Shorting) हटाकर विसरण पाइरानोमीटर से आने वाले केबिल के सिरों को अन्तस्थ 3 और 4 से जोड़ देते हैं। समय के निशान के लिए द्विध्ववी द्विक्षेपी स्विच को परिपथ में सम्मिलित करने की आवश्यकता नहीं है क्योंकि यह भू—मण्डलीय पाइरानोमीटर के परिपथ में पहले से ही लगा है।

7. यंत्र के स्थिरांक- भू-मण्डलीय पाइरानोमीटर की तरह विसरण पाइरानोमीटर भी केन्द्रीय विकिरण यूनिट पुणे से प्राप्त होता है। यंत्र के साथ एक अंशशोधक पत्रक भी मिलता है जिसमें निम्न बातें दी होती है।

- ताप वैद्युत पुँज का प्रतिरोध।
- 2. मिली बोल्ट प्रति कैलेरी प्रति वर्ग से.मी. प्रति मिनट की इकाई में पाइरानोमीटर का निर्गम।
- 3. अभिलेखी का प्रतिरोध।
- 4. अभिलेखी की धारा ग्राहिता, माइक्रो एम्पीयर में, अभिलेखी के प्रति पूर्ण स्केल, विक्षेपण के लिए।

5. विकिरण की वह तीव्रता जो स्केल के पूर्ण विक्षेपण के संगत है।

सूर्य ग्रहण के समय सूर्य-मण्डल का कुछ भाग छाया में आ जाता है इस प्रकार पूर्ण सूर्य-मण्डल का विकिरण पाइरानोमीटर पर नहीं पड़ता बल्कि जितना सूर्य मण्डल चमकता रहता है उतने ही विकिरण प्राप्त होता है। इसके अतिरिक्त कुछ विकिरण को छाया मुद्रिका भी पाइरानोमीटर पर पड़ने से रोकती है। गणना में इन दोनों प्रकार की विकिरण ऊर्जा के प्रतिकार के लिए, केन्द्रीय-विकिरण यूनिट पुणे छाया मुद्रिका संशोधन गुणक की आपूर्ति भी करता है। संशोधन गुणक के गणना की विधि नीचे दी गई है।

8. छाया मुद्रिका का संशोधन गुणक-

सूर्य ग्रहण के समय सूर्य के प्रभामण्डल पर छाया पड़ने के साथ—साथ छाया मुद्रिका द्वारा जिस आकाशीय ऊर्जा का अपरोधन होता है उसके लिए संशोधन अवश्य होना चाहिए। गणना के समय आवश्यक संशोधन पूर्णतया नहीं किया जा सकता। अतः जब कभी भी सम्भव हो संशोधन के लिए सर्वाधिक उपयुक्त मान ज्ञात करने के प्रयोग किए जाने चाहिए।

संशोधन की गणना करने के लिए ड्रूमाण्ड (Drumand) ने जिस सूर्य की व्युत्पत्ति की थी वह नीचे दिया जा रहा है-

यदि $\tau = \chi \tau$ का ऑवर कोण (hour angle)

το= सूर्यास्त के समय सूर्य का ऑवर-कोण (hour angle)

φ = प्रेक्षण स्थल का अक्षांश

s = सूर्य का दिग्पात

b = छाया मुद्रिका की चौड़ाई

r = छाया मुद्रिका का अर्धव्यास

x = मुद्रिका से घिरे हुए ग्राही तल पर पड़ने वाली ऊर्जा

T = सम्पूर्ण भू-मण्डलीय गोलार्ध से क्षैतिज तल पर पड़ने वाली ऊर्जा

गोलार्ध विकिरण का वह भाग जो मुद्रिका द्वारा छनित होता है, इस प्रकार लिखा जा सकता है।

$$\frac{X}{T} = \frac{2b}{\pi r} \cos^3 S$$
 (Sin Φ Sin SX to + Cos Φ Cos Φ Sin To)

यदि मापा गया विसरित विकिरण Dm हो तो

और संशोधित विकिरण का मान DC

$$D_{C} = \frac{D_{m}}{(1-\underline{X})}$$

अगर आसमान एक समान द्युतिमान हो तो संशोधन गुणक =1 होता है जहां r की तुलना b का मान बहुत कम होता है। $\frac{(1-X)}{T}$

पुणे के लिए 445 मि.मी. अर्धव्यास और 50 मि.मी. चौड़ाई की छाया—मुद्रिका से संशोधन <u>1</u> गुणक से पूरे वर्ष में जो परिवर्तन

(1 - <u>x</u>)

होता है वह चित्र 5 में एक वक्र रेखा द्वारा दिखाया गया है। इस चित्र से यह देखा जा सकता है कि संशोधन 4 से 8 प्रतिशत तक बदलता है और गुणक का न्यूनतम मान जनवरी और अधिकतम मान अप्रैल से सितम्बर के बीच होता है तथा द्वितीय न्यूनतम मान जुलाई में होता है।

ऊपर की गणना इस कल्पना पर आधारित है कि आकाशीय विसरित विकिरण एकसमान है और ग्राहीतल आदर्श ग्राहीतल है। आसमान आकाशीय विकिरण के लिए, जिसमें परिसौर विकिरण (Circumsolar Radiation) की तीव्रता में ध्यान देने योग्य परिवर्तन (Marked variation) सम्मिलित है संशोधन आवश्यक है।

8.1 रवच्छ आकाश की स्थिति-

निम्न दो विधियों से मापे गये विसरित विकिरण की तुलना होनी चाहिए।

- (1) जब पाइरानोमीटर पर छाया मुद्रिका लगी हो और
- (2) जब छाया मुद्रिका की जगह एक छोटी चक्रिका लगी हो जिसे एक आधार स्तम्भ में एक पतली श्लाका बांधकर उसके ऊपरी सिरे पर जोड़ा गया हो।

सर्वप्रथम अभिलेखी के अनुरेख का निरीक्षण यह देखने के लिए कर लेना चाहिए कि विसरित विकिरण इस प्रकार की तुलना के लिए सहयरूप से स्थायी है। चक्रिका द्वारा अवरोधित (cutoff) विकिरण नगण्य होता है। इसलिए चक्रिका को लगाकर लिए गए संचित्र विक्षेपण और उसके तुरन्त पहले और बाद में लिये गये औसत विक्षेप के अनुपात से, उस समय छाया मुद्रिका द्वारा अवरुद्ध विकिरण के संशोधन के लिए सही गुणक का पता चलता है।

8.2 मेघाच्छादित आकाश की स्थिति— जिस पाइरानोमीटर में छाया मुद्रिका लगी होती है उस से ली गयी विसरित विकिरण की मानों की तुलना उन् मानों से की जानी चाहिए जो उस पाइरानोमीटर से मिली है जो अलग से केवल भूमण्डलीय विकिरण के लिए लगाया गया हो। जब आसमान पर बादल छाये हों और सूर्य दिखाई नहीं पड़ रहा हो, भूण्डलीय पाइरानोमीटर विसरित विकिरण भी अभिलेखित करता है।

जब तक कोई स्टेशन उपरोक्त प्रयोगों को कई बार करके उस स्थान के लिए, संशोधन का अधिक उपयुक्त मान ज्ञात नहीं कर लेता तब तक उस स्टेशन के लिए पहले से गणना करके ग्राफ में दिये गये संशोधन मान का प्रयोग किया जा सकता है। फिर भी अगर किसी मौके पर ऐसा आभास हो कि विसरित विकिरण का वह मान जो विसरित पाइरानोमीटर के अभिलेखन से, मेघाच्छादित आकाश की स्थिति के लिए संशोधन के बाद मिला हो, उस मान से अधिक मिल रहा है जो भूमण्डलीय पाइरानोमीटर से मिला है तो बाद वाले मान (भूमण्डलीय पाइरानोमीटर से लिए गए) मान को सही मानना चाहिए।

9. संक्रिया और देखभाल— इस यंत्र की संक्रिया और देखभाल की विधि भी वही है जो भूमंडलीय पाइरानोमीटर के लिए आई.एस. सर्कुलर नं. 45 में पृष्ठ 13 से 18 पर दी गई है। सूर्य का दिग्पात प्रतिदिन बदलता रहता है अतः तिथि के अनुसार सूर्य के दिकपात के लिए स्केल पर जो मान आता है उसके अनुसार उस तिथि में विसरण में विसरण पाइरानोमीटर की छाया मुद्रिका को समायोजित कर लेना चाहिए। यह काम नित्य कर लेना चाहिए। छाया मुद्रिका को समायोजित करने के लिए स्लाइडर पर लगे नट को ढ़ीला कर लेना चाहिए और छाया मुद्रिका को वांछित स्थिति में लाकर नट को पुनः कस देना चाहिए। छाया मुद्रिका को समायोजित करते समय यह भी देख लेना चाहिए कि छाया मुद्रिका की छाया पाइरानोमीटर के बाहरी गुम्बद के सभी भागों को ढक रही हो। कांच के गुम्बद की सतह से बहु परावर्तन के कारण होने वाली अशुद्धियों को रोकने के लिए केवल ताप—वैद्युत पुंज के संवेदनशील तल को ही नहीं बिल्क कांच के पूरे बाहरी गुम्बद को ढकना आवश्यक है। यह भी देख लेना चाहिए कि छाया मुद्रिका के अन्दर की ओर वाले तल का विलेपन एक समान है। अगर ऐसा लगे कि अन्दर के तल पर लगा काला पेन्ट और बाकी भागों पर लगा श्वेत पेन्ट में अवनित के लक्षण तो पैदा नहीं हो रहे हैं अगर ऐसा हो तो पुणे से प्राप्त पेन्ट पुनः लगा देना चाहिए जिससे पूरे तल पर पेन्ट एक समान बना रहे।

10. आंकड़ों का सारणीकरण— अभिलेखी से चार्ट हटाने के बाद जितना शीघ्र हो सके, आंकड़ों को प्रतिदिन सारणीबद्ध कर लेना चाहिए। अभिलेखन से प्राप्त सूचनाओं से विसरित विकिरण का प्रति घंटे और पूरे दिन के योग की गणना कर लेनी चाहिए और छाया मुद्रिका के लिए संशोधन करने के बाद पूरे दिन का मान कैलोरी/से.मी.2/घंटे के रूप में, आपूर्ति किए गये फार्म में लिख लेना चाहिए। उदाहरण के लिए एक फार्म परिशिष्ट नं. 1 में दिया गया है।

पाइरानोमीटर द्वारा प्रदर्शित मान 1956 अन्तर्देशीय सूर्य विकिरण मापी स्केल पर आधारित है। उदाहरण के लिए चित्र 6 में एक पाइरानोग्राफ प्रदर्शित है जिसमें भूमण्डलीय और विसरित दोनों प्रकार के विकिरण दिखाए गए हैं। अभिलेखन के मूल्यांकन (Evaluation) की विस्तार पूर्वक व्याख्या भी ठीक उसी प्रकार की है जैसी भूमण्डलीय पाइरानोमीटर के लिए आई.एस. सर्कुलर नं. 45 में दी गई है।

11. अनुसंशोधन- छाया मुद्रिका को हटाकर विसरण पाइरानोमीटर का अनुसंधान करना चाहिए। अनुसंशोधन की विधि सम्पूर्ण पाइरानोमीटर अनुसंशोधन विधि के समान ही है जो आई.एस. सर्कुलर नं. 45 पृष्ठ 24-25 पर दी गई है।

Station: Poona.		COMPUT Da	COMPUTATION OF Date: 1st	٠, ات	HOURLY AND I	DAILY VA	VALUES OF Scal	DIFF le ve	of of	RADIAT t No. 1 cord: 7	MY) RADIATION. ment No. 1003. record: 79 div./cal./cm.2/min.	cal./cm	.2/min.	
Quarter hourly intervals.	5 ! 6	6 - 7	7 - 8	8 1	9 -10	10-11	Hours I	L.A.T. 2 12-13	13-14	14-15	15-16	16-17	17-18	18-19
		en ren can enthance	and a control of the		Def	Deflections	in time		intervals of	15	minutes.			
0 - 15 mts.	0.0	8.0	15.5	18.5	22.0	21.0	18.5	20.5	25.0	31.0	18.5	13.0	11.0	4.5
15-30 mts.	0.5	9.0	18.0	20.0	22.0	21.0	18.5	23.0	31.0	27.5	20.0	12.5	9.0	2.0
30-45 mts.	ى ق ت	12.0	18.5	24.0	21.0	20.5	18.0	21.0	30.0	25.5	21.0	12.5	9,5	1.0
45-60 mts.	5.0	14.0	18.5	24.0	21.0	18.5	18.0	25.5	31.0	20.0	14.5	11.0	6. 5	0.0
Sum	8.0	43.0	70.5	86.5	86.0	81.0	73.0	90.0	117.0	104.0	74.0	49.0	36.0	7.5
Mean deflection for the hour	×.	10.7	17.6	21.6	21.5	20,3	18.3	22.5	29.3	26.0	18.5	12.3	9.0	1.9
Diffuse (sky) radiation for each hour in cal./om.	5	8 . 1	13.4	16.4	16.3	15.4	14 944 grade 9	17.1	22.	19.7	14.1	9 3	6.	1.4
Diffuse (sky) radiation corrected for shading ring for each hour in cal./cm.	<u>1</u> ° 6	8 . 6	14.3	1 4 4 4 4 4 4 5 1 6 1 5 1 6 1 5 1 6 1 5 1 6 1 6 1 6 1	17.4	16.4	14. 14. 15. gay 9 14. 8	44 (94) 419 44 1 401 08 90 2	ω 	21.0	15.0	9	7. 2	22 ·
Diffuse (sky) radiation for the whole day in cal./cm.	20		1.3	187 (International	ternati		Pyrheliometric Scale	etric S		1956).	(30) 3103		(3) ³	1000

9

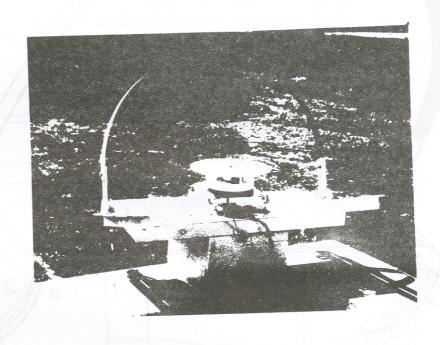


FIG.I - PYRANOMETER WITH SHADING RING (SCHUEPP MODEL)

(1.S.C. No. 45A)

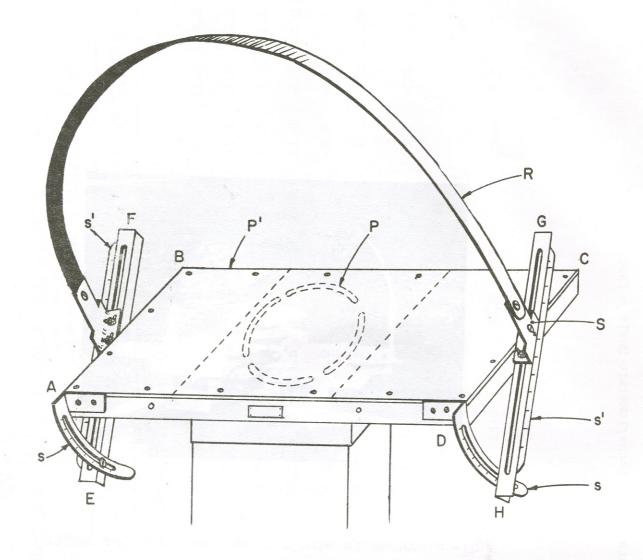
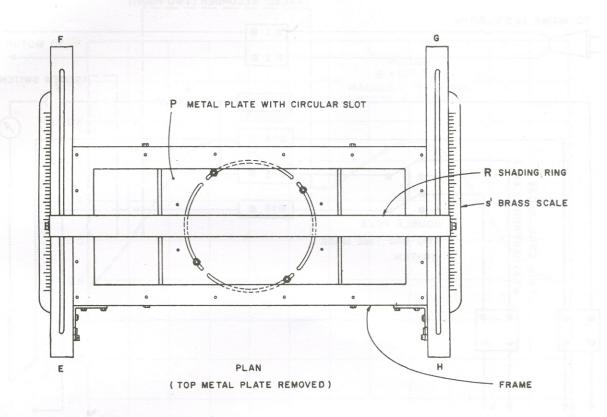
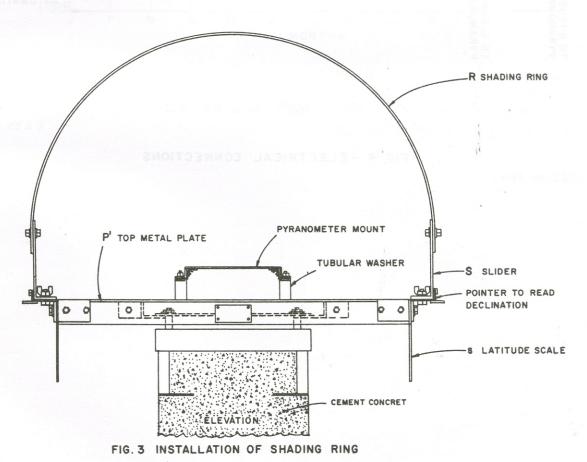




FIG. 2 - SHADING RING ARRANGEMENT

(1.S.C.No.45A)

(L.S.C. No. 45A)

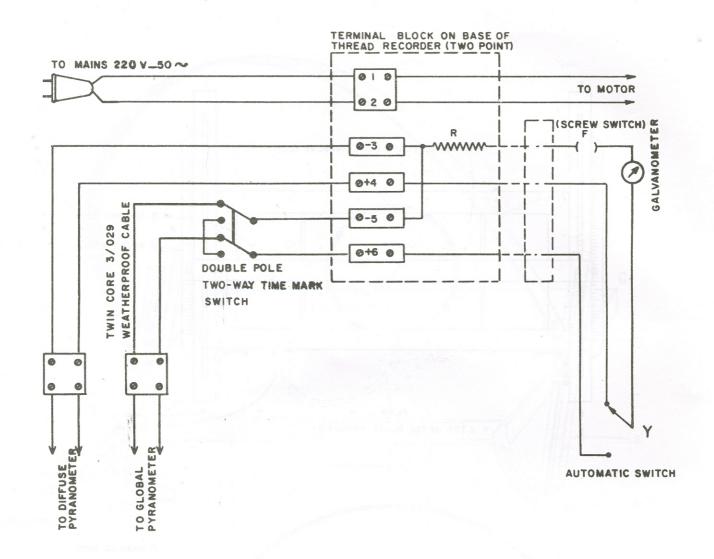


FIG. 4 - ELECTRICAL CONNECTIONS

(1.S.C. No. 45 A)

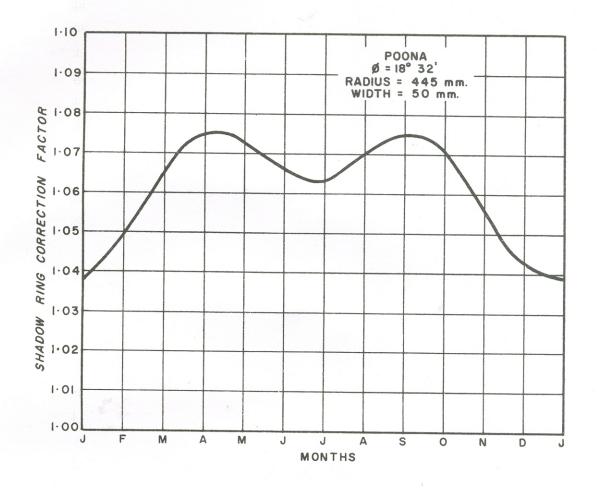


FIG.5 - SHADOW RING CORRECTION FACTOR

(1.S.C.No.45A)