Fast calculation of the fractions skill score

NATHAN FAGGIAN, BELINDA ROUX, PETER STEINLE and BETH EBERT

Research and Development, Australian Bureau of Meteorology, GPO Box 1289, VIC 3001, Melbourne, Australia

e mail : n.faggian@bom.gov.au

ABSTRACT. The forecast verification metric known as the Fractions Skill Score (FSS) is typically computed using sliding window operators, which can be computationally expensive. A key component of the score is the computation of fractional event frequencies, which is equivalent to a weighted summation of sub-grids (windows) commonly realized as sliding window operators, which can be computationally expensive. A key component of the score is the computation of summed area table can effectively reduce the computation time of the FSS while also allowing the score to generalize to a grid box size, the FSS considers a perfect forecast to be one with the same frequency of events as observed within the window, regardless of their particular placement within the window. An example of an observation and forecast field that could yield a perfect FSS is shown in Figs. 1(a&b). The fractions skill score is an observation and forecast field that could yield a perfect FSS is shown in Figs. 1(a&b). The fractions skill score is an observation and forecast field that could yield a perfect FSS is shown in Figs. 1(a&b).

Key words– NWP, Fractions skill score (FSS).

1. Introduction

As numerical weather prediction (NWP) model forecasts increase in spatial and temporal resolution, the community is turning to diagnostic spatial verification approaches to provide more useful and meaningful quantitative evaluation than is possible using simple statistics like root mean square error. Gilleland et al. (2009) identified four types of spatial verification methods, namely neighborhood methods, scale separation methods, feature-based methods, and field de-formation methods, each of which is well suited for particular types of verification problems. The neighborhood methods are particularly useful for determining the spatial scales at which sufficient forecast skill is achieved. They use various metrics to compare forecasts to observations in spatial windows of progressively larger size, thereby providing information about forecast accuracy as a function of spatial scale.

The fractions skill score (FSS) introduced by Roberts and Lean (2008) is a neighborhood verification method being used by the U.K. Met. Office and other national centres to verify high resolution precipitation forecasts against radar rainfall estimates (Mittermaier and Roberts, 2010). Conceptually, the spatial distribution of events within a small area is treated probabilistically rather than deterministically. An event is the binary (yes or no) occurrence of something, for example, whether rain in a grid box exceeds a certain intensity threshold. For a given \(n \times n \) window size, the FSS considers a perfect forecast to be one with the same frequency of events as observed within the window, regardless of their particular placement within the window. An example of an observation and forecast field that could yield a perfect FSS is shown in Figs. 1(a&b). The fractions skill score is computed as the fractions Brier score (a variation of the Brier skill score used to verify probability forecasts), divided by the sum of the mean squared forecast and observed fractions and can be written as:

\[
FSS = 1 - \frac{1}{N} \sum_{i=1}^{N} \left(p_f - p_o \right)^2 \\
= 1 - \frac{1}{N} \sum_{i=1}^{N} p_f^2 + \frac{1}{N} \sum_{i=1}^{N} p_o^2
\]

(1)

where \(N \) is the number of windows in the domain (dependent on sliding window size) and \(p_f \) is the forecast fraction, \(p_o \) is the observed fraction of the sliding window.
The computational cost of the FSS is linked to the method used to compute the fractional event frequency \((p_o, p_f)\), the field domain size and the window size. Typically the FSS is computed for a large range of window sizes and the resulting score plotted as a function of windowsize. This allows the scale at which the FSS reaches the target skill of \(0.5 + P_o \) to be easily determined [Roberts and Lean (2008)].

2. Fast methods

As defined by Roberts and Lean (2008) the fractional event frequency of a window with width \(n\), centered on the coordinate \((i, j)\) in the observation field \(O\) is computed as:

\[
O(n)(i, j) = \frac{1}{n^2} \sum_{k=1}^{n} \sum_{l=1}^{n} L_o[i_k + (n-1)/2] + L_o[j_l - (n-1)/2]
\]

where \(L_o(i, j)\) is either 0 or 1. The equation is also applied to the forecast field \(F\), with asimple matrix substitution \((L_o\) for \(L_f\)). In both cases the equation is evaluated over all pixelsin the field, requiring \((n \times n)\) additions in each centered window; as the window size increases the computational load also increases. In practice this can be implemented using a convolutionoperation, for example using a box-car kernel.

2.1. Summed area table (integral image)

In the context of the FSS tables, the event frequency calculation is repeated for multiple windowsizes and object threshold levels, easily making it the most time consuming component of computing the spatial verification metric. Even though convolution is often optimized on moderncomputers, calculating the score can be slow. In this paper we propose the use of a “summedarea table”, also known as an integral image, which is a structured array that is pre-computed, then indexed to efficiently compute summations over a field.

The concept of a summed area table was first introduced for the efficient calculation of “mip-maps” in a computer graphics (Crow, 1984) and they are still popular in computer vision for fast feature extraction in object detection frameworks (Viola and Jones, 2004). To compute the summed area table, \(\hat{O}\), the value at any point \((i, j)\) is the sum of all the grid cells above and to the left of \((i, j)\), inclusive:

\[
\hat{O}(i, j) = \sum_{i=0}^{i_m} \sum_{j=0}^{j_n} O(i, j)
\]

Once the summed area table has been computed, the task of summing a window of width \(m\) and height \(n\) from the coordinate \((i, j)\) in the observation field \(O\) is accomplished with just fourarray references using the following relation:

\[
\sum_{i=i-m}^{i=m} \sum_{j=j-n}^{j+n} \hat{O}(i, j) = \hat{O}(i, j) + \hat{O}(i + m, j + n) - \hat{O}(i + m, j) - \hat{O}(i, j + n)
\]

The calculation of \(\hat{O}\) is demonstrated in Figs. 2(a&b) where the right panel shows the summed area table with the coordinates for each grid-cell. Using the same relation we can define Equation 2, extending the fractional event frequency calculation to rectangular windows \((m \times n)\) centered on the coordinates \((i, j)\) like so:

\[
O(m, n)(i, j) = \frac{1}{m \times n} \left[\hat{O}(i - m/2, j - n/2) + \hat{O}(i + m/2, j + n/2) - \hat{O}(i + m/2, j) - \hat{O}(i, j + n/2) \right]
\]
Fig. 3. The mean computation time (100 repetitions) for the FSS when using a Fourier Transform based convolution (black) and summed area tables (gray) is shown for increasing square domains (250 to 1000 grid-cells) and window sizes (2 to 200 grid-cells)

where \(O \) is the precomputed summed area table of the observation field, using Equation 3. As before, the equation is also applied to the forecast field \(F \), with a simple field substitution \((F \text{ for } O)\), requiring two summed area tables to be computed for each calculation of the fractionskill score. Although the FSS is normally computed for square windows, we generalize in Equation 4 to rectangular windows to facilitate extension to the time domain (see Appendix) or non-isotropic domains such as coasts or mountain ranges, where unequal dimensions may be preferable.

2.1.1. Sampling summed area tables

In practice the summed area table is computed once per thresholded field, as are the shifted coordinates of the entire domain and indexing the table with a matrix of coordinates performs (as shown above) performs a fast sliding window sum. Using a matrix notation for sampling we define the matrix sampling function as \(\mathbf{O} \) and let the entire set of domain coordinates \(i \) and \(j \) be represented as the matrices \(I \) and \(J \) respectively:

\[
\mathbf{O}(I,J) = \begin{bmatrix} \hat{O}(i_0,j_0) & \ldots & \hat{O}(i_0,j_m) \\ \vdots & \ddots & \vdots \\ \hat{O}(i_n,j_0) & \ldots & \hat{O}(i_n,j_m) \end{bmatrix} \tag{6}
\]

which we can use to compute a sliding window sum using shifted coordinates samples, like so:

\[
O(m,n)(I,J) = \frac{1}{m \times n} \left[\hat{O}(I - \frac{m}{2}, J - \frac{n}{2}) + \hat{O}(I + \frac{m}{2}, J + \frac{n}{2}) - \hat{O}(I, J - \frac{n}{2}) - \hat{O}(I, J + \frac{n}{2}) \right] \tag{7}
\]

The computational cost of sampling different window sizes is always the same because the summed area table is computed only once and the number of coordinate samples does not increase. The calculation is only bound by the gridded forecast domain size, which increases the size of the coordinate matrices.

2.2. Boundary conditions

As windows approach domain boundaries there will be boundary effects and window scales must be constrained to a fraction of the maximum extent of the domain to minimize them. Window coordinates that extend beyond the indexable regions of the summed area table must be mapped to values. Our approach clips the coordinates of the rectangles that extend beyond the forecast domain, which is equivalent to padding the field with zeros (as done by Roberts and Lean (2008)).

2.3. Complexity and computation time

The summed area table method for calculating the sliding window sum required for the FSS is very efficient, even when compared to optimized FFT based convolution. Fig. 3 demonstrates the difference between the two approaches, showing that small window sizes both methods are fast to compute. However, the integral image based FSS exhibits (approximate) constant time performance and as window sizes increase the maximum performance gain ranges between 30% to 85% relative to the FFT approach. A fair and objective way to compare algorithm complexity is through the use of Big \(\mathcal{O} \) notation (Knuth, 1968). The notation is a measure of the computational complexity of any algorithm relative to their growth rates: non-linear growth is considered poor while linear or approximately linear is considered good. Using the integral image to calculate requires a constant number of array lookups. The computation is bound by the number of grid cells \(N \) and a constant number \(4 \) of lookups for a variable sized window, resulting in a computational complexity of \(O(N) \). The more complex convolution approach is a combination of both a Fast Fourier
2.4. Validation of the approach

To validate the method it was applied to a precipitation data set provided by the Spatial Verification Inter-comparison Project (Ahijevych et al., 2009). Figs. 4(a-c) shows the Fast FSS computed for a subset of the perturbed precipitation cases (as lines) which are compared to values (red circles) from the NCAR FSS implementation developed by Gilleland et al. (2014) at precipitation thresholds of 0.5 to 32 mm/hr and scale intervals of 25 km. Figs. 4(a-c) clearly shows the equivalence of the fast FSS calculation to the original methodology proposed by Roberts and Lean (2008).
Figs. 5(a&b). Fractions Skill scores for (a) experimental 1.5 km high-resolution and (b) 12 km operational NWP systems at different spatial scales and precipitation threshold levels.

Fig. 6. FSS for 1.5 (solid) and 12 (dashed) km resolution NWP, for three precipitation thresholds. Subsets of the NWP models and corresponding analysis fields show the spatial variation at the beginning, middle and end of the period centered on 0000 UTC 26th of November, 2011.
3. Demonstration using Australian rain events

As a further demonstration of the method, we compare the performance of an operational 12 km regional NWP system that includes 6 hourly four dimensional variational assimilation and an experimental 1.5 km system that includes 3 hourly three dimensional variation assimilation. The 12 km system uses routine in situ and satellite data, as described in the Bureau of Meteorology’s Operations Bulletin 98 (BoM, 2013). The 1.5 km system is based on the U. K. Met. Office 1.5 km system (Lean et al., 2008) and applied to a smaller $10^3 \times 12^2$ domain centered over Sydney in southeastern Australia. The higher resolution system also has higher vertical resolution near the Earth’s surface, at the expense of levels in the mesosphere. For this reason the high resolution system assimilates a reduced set of channels from satellite sounders. The high resolution system is however nudged towards rainfall analyses based on radar and rain gauge data (Chumchean et al., 2006) during the assimilation window. The forecasts are verified against analyses based on radar rainfall estimates and rain gauge data (Chumchean et al., 2006) where the radar coverage is of a suitable quality.

3.1. Comparing multiple rain-events

From the period of November 2011 to June 2012 hourly forecasts of precipitation were compared between the 1.5 km and 12 km models. Events of interest were identified from the dataset by selecting forecasts that maintained overland precipitation greater than 1 mm/hr, resulting in a large set (many thousands) of hourly forecasts for analysis. The FSS results for forecasts of hourly rainfall out to 36 hours were then grouped by lead time and the mean fraction skill score was calculated by averaging the numerator and denominator of the score separately.

Figs. 5(a&b) shows the resulting skill plots for spatial scales up to 500 km and precipitation thresholds from 0.5 mm/hr to 16 mm/hr at lead times of three and six hours respectively. The results suggest that the 1.5 km model performs slightly better at low precipitation levels and spatial scales, particularly at the three hour lead time which is likely due, at least in part, to the assimilation of radar data. As the forecast lead times increase the skill of the 12 km model appears to improve while the skill of the 1.5 km model decreases. At the six hour lead time the 1.5 km model appears to reduce in skill more rapidly than the 12 km model at moderate precipitation thresholds.

3.2. Comparing a single event over time

We also performed a temporal analysis of an intense rain event during the 26th of November, 2011 for 1.5 km and 12 km model forecasts initialized at 1200 UTC on the 25th. For each forecast we calculated the FSS for the 50 km spatial scale and 0.5, 2.0 and 4.0 mm/hr precipitation thresholds. We selected these scales to explore the differences between the models at low rain rates and to assess the temporal skill of the forecasts for this event. Results are shown in Fig. 6.

Over the period of interest it is difficult to identify where one model performed significantly better than the other. The high values of FSS in Fig. 6 indicate that both models accurately captured the occurrence of rain. The peak skill occurred near the middle of the event. Interestingly, both models skill slowly decrease at approximately the same rate toward the end of the period, which may result from both a reduction in the rain rate over the period and the expected reduction of forecast skill as lead-time increases. The skill of both forecast was least for the heaviest rain thresholds (as must be the case for FSS), with the 1.5 km model showing some advantage over the coarser model for most of the period.

4. Conclusions

A key component of the FSS is the computation of fractional event frequencies, which is equivalent to a weighted summation of sub-grids (windows). In this paper we have demonstrated how summed area tables can be used as an efficient way to calculate the FSS and validated the method against independent calculations of FSS on a high-resolution data set. The key benefit of using summed area tables over other approaches is their comparative simplicity and, most importantly, their speed. Using the FSS we compared two NWP models at 36 matched lead times, leading to the calculation of many thousands of the FSS, to explore mean and temporal performance of the models. Without a fast approach to calculate the FSS, as we have provided, generation of the scores required for our verification experiments would take a significantly longer time or a large computer resource. As suggested earlier the FSS can be extended to the time dimension (Duc et al., 2013) and the fast computation of the FSS for three dimensional data via summed area volumes is described in the Appendix. This work has shown that summed area tables are a useful tool when calculating verification metrics that require local summation (or smoothing), for interested readers a good reference implementation for summed area tables provided by van der Walt et al. (2014).

References

APPENDIX

Summed area volume (integral volume)

A benefit of summed area tables is that the same approach also applies to forecast volumes. For demonstration only, we follow the definition by Tapia (2011) to extend the FSS calculation to include the third (time) dimension, using the “integral volume”. To compute the integral volume (\hat{O}) the value at any point (i,j,k) is computed as:

$$\hat{O}(i,j,k) = \sum_{i=0}^{i<\hat{O}} \sum_{j=0}^{j<\hat{O}} \sum_{k=0}^{k<\hat{O}} O(i,j,k)$$ \hspace{1cm} (8)

As before the task of summing a volume of dimension $m \times n \times p$, centered on the coordinate (i,j,k) is accomplished in constant time with just eight array references, leading to a redefinition of Equation 2:

$$O(m,n,p)(i,J,K) = \frac{1}{m \times n \times p} \begin{bmatrix} \hat{O}(I+m,J+n,K+p) - \\ \hat{O}(I-m,J+n,K+p) - \\ \hat{O}(I+m,J-n,K+p) - \\ \hat{O}(I-m,J-n,K+p) - \\ \hat{O}(I+m,J+n,K-p) - \\ \hat{O}(I-m,J+n,K-p) - \\ \hat{O}(I+m,J-n,K-p) + \\ \hat{O}(I-m,J-n,K-p) + \end{bmatrix}$$ \hspace{1cm} (9)
where the coordinates are \((I, J, K)\) are defined as matrices and the sampling of the integral volume is performed in a similar fashion to Equation 7. In practice the time window \((p)\) for meteorological forecasts will generally be small since the time scales relevance for mesoscale modeling are typically on in the order of hours. For the particular case of estimating rainfall accuracy, combining time and spatial uncertainty has the disadvantage of making interpretation of the results more difficult. However, if the forecast user is willing to be tolerant of some temporal error in forecast mesoscale weather processes, then the addition of a temporal dimension in the skill score is appropriate.

FSS implementation

An example reference implementation is provided to demonstrate the simplicity of using the summed area table calculations as a part of computing the FSS. For comparison a FFT based approach is also provided.

Implementation 1: FSS using summed area tables and FFT based convolution in Python.

```python
.. module:: fss
:platform: Unix
:synopsis: Compute the fraction skill score (2D).

.. moduleauthor:: Nathan Faggian <n.faggian@bom.gov.au>

```
r = r.astype(np.int)
c = c.astype(np.int)
w = np.int(w)

r0, c0 = (np.clip(r - w, 0, field.shape[0] - 1),
 np.clip(c - w, 0, field.shape[1] - 1))
r1, c1 = (np.clip(r + w, 0, field.shape[0] - 1),
 np.clip(c + w, 0, field.shape[1] - 1))

integral_table = np.zeros(field.shape).astype(np.int64)
integral_table += np.take(table, np.ravel_multi_index((r1, c1), field.shape))
integral_table += np.take(table, np.ravel_multi_index((r0, c0), field.shape))
integral_table -= np.take(table, np.ravel_multi_index((r0, c1), field.shape))
integral_table -= np.take(table, np.ravel_multi_index((r1, c0), field.shape))
return integral_table

def fourier_fss(fcst, obs, threshold, window):
 """
 Compute the fraction skill score using convolution.
 :param fcst: nd-array, forecast field.
 :param obs: nd-array, observation field.
 :param window: integer, window size.
 :return: tuple of FSS numerator, denominator and score.
 """
 fhat = fourier_filter(fcst> threshold, window)
 ohat = fourier_filter(obs> threshold, window)
 num = np.nanmean(np.power(fhat - ohat, 2))
 denom = np.nanmean(np.power(fhat, 2) + np.power(ohat, 2))
 return num, denom, 1.-num/denom

def fss(fcst, obs, threshold, window, fcst_cache=None, obs_cache=None):
 """
 Compute the fraction skill score using summed area tables.
 :param fcst: nd-array, forecast field.
 :param obs: nd-array, observation field.
 :param window: integer, window size.
 :return: tuple of FSS numerator, denominator and score.
 """
 fhat = integral_filter(fcst> threshold, window, fcst_cache)
 ohat = integral_filter(obs> threshold, window, obs_cache)
num = np.nanmean(np.power(fhat - ohat, 2))
denom = np.nanmean(np.power(fhat, 2) + np.power(ohat, 2))
return num, denom, 1.-num/denom

def fss_frame(fcst, obs, windows, levels):

 Compute the fraction skill score data-frame.
 :
 :param fcst: nd-array, forecast field.
 :param obs: nd-array, observation field.
 :param window: list, window sizes.
 :param levels: list, threshold levels.
 :return: list, dataframes of the FSS: numerator, denominator and score.

 num_data, den_data, fss_data = [], [], []

 for level in levels:
 ftable = compute_integral_table(fcst> level)
 otable = compute_integral_table(obs> level)

 _data = [fss(fcst, obs, level, w, ftable, otable) for w in windows]

 num_data.append([x[0] for x in _data])
 den_data.append([x[1] for x in _data])
 fss_data.append([x[2] for x in _data])

 return (pd.DataFrame(num_data, index=levels, columns=windows),
 pd.DataFrame(den_data, index=levels, columns=windows),
 pd.DataFrame(fss_data, index=levels, columns=windows))

..